题目内容

(2011?福建)如图甲,在x>0的空间中存在沿y轴负方向的匀强电场和垂直于xoy平面向里的匀强磁场,电场强度大小为E,磁感应强度大小为B.一质量为m,带电量为q(q>0)的粒子从坐标原点O处,以初速度v0沿x轴正方向射入,粒子的运动轨迹见图甲,不计粒子的重力.
(1)求该粒子运动到y=h时的速度大小v;
(2)现只改变入射粒子初速度的大小,发现初速度大小不同的粒子虽然运动轨迹(y-x曲线)不同,但具有相同的空间周期性,如图乙所示;同时,这些粒子在y轴方向上的运动(y-t关系)是简谐运动,且都有相同的周期T=
2πrnqB

Ⅰ.求粒子在一个周期T内,沿x轴方向前进的距离S;
Ⅱ.当入射粒子的初速度大小为v0时,其y-t图象如图丙所示,求该粒子在y轴方向上做简谐运动的振幅A,并写出y-t的函数表达式.
分析:(1)在粒子的运动的过程中,磁场力不做功,只有电场力做功,根据动能定理可以求得粒子的运动的速度的大小;
(2)Ⅰ.由图乙可知,所有粒子在一个周期T内沿x轴方向前进的距离相同,即都等于恰好沿x轴方向匀速运动的粒子在T时间内前进的距离.
Ⅱ.设粒子在y轴方向上的最大位移为ym(图丙曲线的最高点处),对应的粒子运动速度大小为v2(方向沿x轴),因为粒子在y方向上的运动为简谐运动.
解答:解:(1)由于洛伦兹力不做功,只有电场力做功,
由动能定理有-qEh=
1
2
mv2-
1
2
m
v
2
0

由①式解得                     
 v=
v
2
0
-
2qEh
m

(2)Ⅰ.由图乙可知,所有粒子在一个周期T内沿x轴方向前进的距离相同,
即都等于恰好沿x轴方向匀速运动的粒子在T时间内前进的距离.
设粒子恰好沿x轴方向匀速运动的速度大小为v1,则
qv1B=qE                            ③
又  S=v1T                               ④
式中 T=
2πm
qB

由③④式解得                    
 S=
2πmE
qB2

Ⅱ.设粒子在y轴方向上的最大位移为ym(图丙曲线的最高点处),对应的粒子运动速度大小为v2(方向沿x轴),因为粒子在y方向上的运动为简谐运动,因而在y=0和y=ym处粒子所受的合外力大小相等,方向相反,

qv0B-qE=-(qv2B-qE)          ⑥
由动能定理有     -qEym=
1
2
m
v
2
2
-
1
2
m
v
2
0

又   Ay=
1
2
ym

由⑥⑦⑧式解得                      
Ay=
m
qB
(v0-
E
B
)

可写出图丙曲线的简谐运动y-t函数表达式为y=
m
qB
(v0-
E
B
)(1-cos
qB
m
t)
点评:本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网