题目内容
| F |
| 4 |
分析:物体在光滑水平面上做匀速圆周运动,由绳子的拉力提供向心力,根据牛顿第二定律分别求出两种拉力情况下物体的速度,再根据动能定理求出外力对物体所做的功大小.
解答:解:设当绳的拉力为F时,小球做匀速圆周运动的线速度为v1,则有F=m
.
当绳的拉力减为
时,小球做匀速圆周运动的线速度为v2,则有
F=m
.
在绳的拉力由F减为
F的过程中,根据动能定理得
W=
mv22-
mv12=-
FR.
所以绳的拉力所做功的大小为
FR
故选A
| v12 |
| R |
当绳的拉力减为
| F |
| 4 |
| 1 |
| 4 |
| v22 |
| 2R |
在绳的拉力由F减为
| 1 |
| 4 |
W=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
所以绳的拉力所做功的大小为
| 1 |
| 4 |
故选A
点评:本题是向心力与动能定理的综合应用,它们之间的纽带是速度.属常规题.
练习册系列答案
相关题目
| A、地面对楔形物块的支持力为(M+m)g | B、地面对楔形物块的摩擦力为零 | C、楔形物块对小物块摩擦力可能为零 | D、小物块一定受到四个力作用 |