ÌâÄ¿ÄÚÈÝ
1£®£¨1£©ÔÚt=1sʱ¿ÌµçÁ÷±íµÄʾÊý£»
£¨2£©µç×èRÉÏÏûºÄµÄµç¹¦ÂÊ£»
£¨3£©´Ót=0ÖÁ1=3sµÄʱ¼äÄÚˮƽÍâÁ¦Ëù×öµÄ¹¦W£®
·ÖÎö £¨1£©¸ù¾Ýµç¶¯ÊÆÎªE=BLv=BL2sin$\frac{¦Ðt}{2}$£¬Çó³öµ±t=1sʱµÄµçѹ×î´óÖµ£¬´Ó¶øÇó³öÓÐЧֵ£¬¸ù¾Ý±äѹÆ÷Ô¸±ÏßȦµçѹ¡¢µçÁ÷ÓëÏßȦÔÑÊýµÄ¹ØÏµÇó½â£»
£¨2£©¸ù¾ÝP=I2RÇó½â¹¦ÂÊ£»
£¨3£©¸ù¾Ý¶¯Äܶ¨ÀíÇó³öˮƽÍâÁ¦Ëù×öµÄ¹¦W£®
½â´ð ½â£º£¨1£©¾ÝÌâÒ⣬Ëٶȱ仯¹æÂÉΪv=2sin$\frac{¦Ð}{2}$t£¨m/s£©£¬Ôò²úÉúµÄµç¶¯ÊÆÎªE=BLv=BL¡Á2sin$\frac{¦Ðt}{2}$£¬µ±t=1sʱ£¬µç¶¯ÊÆÎªEm=1v£¬ÔòÔÏßȦµçѹΪU1m=1v£¬ÔòÓÐЧֵ${U}_{1}=\frac{\sqrt{2}}{2}V$£¬
¸ù¾Ý$\frac{{U}_{1}}{{U}_{2}}=\frac{{n}_{1}}{{n}_{2}}$µÃ£º${U}_{2}=\frac{\sqrt{2}}{4}V$£¬ÔòÔÚt=1sʱ¿Ì¸±ÏßȦµÄµçÁ÷£¬µçÁ÷±íµÄʾÊý${I}_{2}=\frac{{U}_{2}}{R}=\frac{\sqrt{2}}{2}A$£¬
¸ù¾Ý$\frac{{I}_{1}}{{I}_{2}}=\frac{{n}_{2}}{{n}_{1}}$µÃ£º${I}_{1}=\frac{\sqrt{2}}{4}A$
£¨2£©µç×èRÉÏÏûºÄµÄµç¹¦ÂÊP=${{I}_{2}}^{2}R=£¨\frac{\sqrt{2}}{2}£©^{2}¡Á0.5=0.25W$£¬
£¨3£©¸ù¾Ý¶¯Äܶ¨ÀíÓУºwÍâ-w°²=$\frac{1}{2}$mv2£¬ÔòÓÐwÍâ=w°²+$\frac{1}{2}$mv2£¬
ÓÉv=2sin$\frac{¦Ð}{2}$t£¬¿ÉÖª£¬t=0ʱ£¬v=0£¬t=3sʱ£¬v=-2m/s£¬
¶ø°²ÅàÁ¦×ö¹¦Îª£ºw°²=U2I2t=0.75J
½âµÃ£ºwÍâ=2.75J
´ð£º£¨1£©ÔÚt=1sʱ¿ÌµçÁ÷±íµÄʾÊýΪ$\frac{\sqrt{2}}{4}A$£»
£¨2£©µç×èRÉÏÏûºÄµÄµç¹¦ÂÊΪ0.25W£»
£¨3£©´Ót=0ÖÁ1=3sµÄʱ¼äÄÚˮƽÍâÁ¦Ëù×öµÄ¹¦Îª2.75J£®
µãÆÀ ÖªµÀµ¼Ìå°ôÇиî´Å¸ÐÏß²úÉúÕýÏÒʽ½»±äµçÁ÷¡¢Ó¦ÓÃE=BLv¡¢±äѹÆ÷¹«Ê½¡¢½¹¶ú¶¨Âɼ´¿ÉÕýÈ·½âÌ⣬֪µÀµ¼Ìå°ô²úÉú½»±äµçÁ÷ÊÇÕýÈ·½âÌâµÄ¹Ø¼ü£®
| A£® | Ô² | B£® | ÍÖÔ² | C£® | Å×ÎïÏß | D£® | Ö±Ïß |
| A£® | ÎïÌåµÄ¼ÓËٶȱ£³Ö²»±ä£¬ÎïÌåÒ»¶¨ÑØÖ±ÏßÔ˶¯ | |
| B£® | ÎïÌåµÄËٶȱ仯Խ¿ì£¬¼ÓËÙ¶ÈÒ»¶¨Ô½´ó | |
| C£® | ×öÖ±ÏßÔ˶¯µÄÎïÌ壬¼ÓËٶȼõС£¬ËÙ¶ÈÒ»¶¨¼õÉÙ | |
| D£® | ÎïÌå×öÔÈËÙÔ²ÖÜÔ˶¯Ê±£¬ÔÚÏàµÈʱ¼äÄÚËٶȱ仯Á¿Ò»¶¨Ïàͬ |
| A£® | mv | B£® | $\frac{1}{2}$mv | C£® | mv2 | D£® | $\frac{1}{2}$mv2 |
| A£® | FÊÇÒýÁ¦ | B£® | FÊdzâÁ¦ | ||
| C£® | ÈôÔö´óÁ½µçºÉ¼äµÄ¾àÀ룬ÔòF¼õС | D£® | ÈôÔö´óÁ½µçºÉ¼äµÄ¾àÀ룬ÔòFÔö´ó |
| A£® | F£¬·½ÏòÏòÓÒ | B£® | F£¬·½ÏòÏò×ó | C£® | 2F£¬·½ÏòÏòÓÒ | D£® | 2F£¬·½ÏòÏò×ó |