ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬Ð¡³µÖÊÁ¿M=8©K£¬´øµçºÉÁ¿q=+3¡Á10-2C£¬ÖÃÓÚ¹â»¬Ë®Æ½ÃæÉÏ£¬Ë®Æ½ÃæÉÏ·½´æÔÚ·½ÏòˮƽÏòÓÒµÄÔÈÇ¿µç³¡£¬³¡Ç¿´óСE=2¡Á102N/C£®µ±Ð¡³µÏòÓÒµÄËÙ¶ÈΪv=3m/sʱ£¬½«Ò»¸ö²»´øµç¡¢¿ÉÊÓΪÖʵãµÄ¾øÔµÎï¿éÇá·ÅÔÚС³µÓÒ¶Ë£¬Îï¿éÖÊÁ¿m=1kg£¬Îï¿éÓëС³µ±íÃæ¼ä¶¯Ä¦²ÁÒòÊý¦Ì=0.2£¬Ð¡³µ×ã¹»³¤£¬gÈ¡10m/s2£¬Çó£º
£¨1£©Îï¿éÔÚС³µÉÏ»¬¶¯¹ý³ÌÖÐϵͳÒòĦ²Á²úÉúµÄÄÚÄÜ£®
£¨2£©´Ó»¬¿é·ÅÔÚС³µÉϺó5sÄڵ糡Á¦¶ÔС³µËù×öµÄ¹¦£®
£¨1£©Îï¿éÔÚС³µÉÏ»¬¶¯¹ý³ÌÖÐϵͳÒòĦ²Á²úÉúµÄÄÚÄÜ£®
£¨2£©´Ó»¬¿é·ÅÔÚС³µÉϺó5sÄڵ糡Á¦¶ÔС³µËù×öµÄ¹¦£®
£¨1£©Îï¿é·ÅÉϺó£¬Ð¡³µÏòÓÒ×öÔȼÓËÙÔ˶¯a1=
=0.5m/s2
Îï¿éÏòÓÒ×öÔȼÓËÙÔ˶¯a2=¦Ìg=2m/s2
É軬¿éÔÚС³µ»¬ÐÐʱ¼ät1
µ±Á½ÕßËÙ¶ÈÏàµÈʱÓÐ v1+a1t1=a2t1£¬t1=2s
Îï¿éÔÚ³µÉÏÏà¶Ô³µ»¬ÐоàÀ룺¡÷S=S³µ-SÎï=v1t1+
a1t2-
a2t2=3(m)
¹Ê Q=f¡÷S=¦Ìmg?¡÷S=6J
£¨2£©µ±Îï¿éÓëС³µÏà¶Ô¾²Ö¹Ê±£¬¹²Í¬Ô˶¯¼ÓËÙ¶Èa3=
=
=
m/s2
µ±Îï¿éÓëС³µÏà¶Ô¾²Ö¹Ê±£¬¹²Í¬Ô˶¯µÄËÙ¶Èv=v1+a1t1=4m/s
Îï¿éÓëС³µÏà¶Ô¾²Ö¹Ç°Ð¡³µÔ˶¯µÄÎ»ÒÆ S1=v1t1+
a1t12=7m
Îï¿éÓëС³µÏà¶Ô¾²Ö¹ºóС³µÔ˶¯µÄÎ»ÒÆ S2=vt2+
a3t22=4¡Á3+
¡Á
¡Á9=15m
ËùÒÔ 5sÄڵ糡Á¦¶ÔС³µËù×öµÄ¹¦ W=qE?£¨S1+S2£©=132J
´ð£º£¨1£©Îï¿éÔÚС³µÉÏ»¬¶¯¹ý³ÌÖÐϵͳÒòĦ²Á²úÉúµÄÄÚÄÜΪ6J£®
£¨2£©´Ó»¬¿é·ÅÔÚС³µÉϺó5sÄڵ糡Á¦¶ÔС³µËù×öµÄ¹¦132J£®
| Eq-¦Ìmg |
| M |
Îï¿éÏòÓÒ×öÔȼÓËÙÔ˶¯a2=¦Ìg=2m/s2
É軬¿éÔÚС³µ»¬ÐÐʱ¼ät1
µ±Á½ÕßËÙ¶ÈÏàµÈʱÓÐ v1+a1t1=a2t1£¬t1=2s
Îï¿éÔÚ³µÉÏÏà¶Ô³µ»¬ÐоàÀ룺¡÷S=S³µ-SÎï=v1t1+
| 1 |
| a |
| 1 |
| 2 |
¹Ê Q=f¡÷S=¦Ìmg?¡÷S=6J
£¨2£©µ±Îï¿éÓëС³µÏà¶Ô¾²Ö¹Ê±£¬¹²Í¬Ô˶¯¼ÓËÙ¶Èa3=
| qE |
| M+m |
| 6 |
| 9 |
| 2 |
| 3 |
µ±Îï¿éÓëС³µÏà¶Ô¾²Ö¹Ê±£¬¹²Í¬Ô˶¯µÄËÙ¶Èv=v1+a1t1=4m/s
Îï¿éÓëС³µÏà¶Ô¾²Ö¹Ç°Ð¡³µÔ˶¯µÄÎ»ÒÆ S1=v1t1+
| 1 |
| 2 |
Îï¿éÓëС³µÏà¶Ô¾²Ö¹ºóС³µÔ˶¯µÄÎ»ÒÆ S2=vt2+
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
ËùÒÔ 5sÄڵ糡Á¦¶ÔС³µËù×öµÄ¹¦ W=qE?£¨S1+S2£©=132J
´ð£º£¨1£©Îï¿éÔÚС³µÉÏ»¬¶¯¹ý³ÌÖÐϵͳÒòĦ²Á²úÉúµÄÄÚÄÜΪ6J£®
£¨2£©´Ó»¬¿é·ÅÔÚС³µÉϺó5sÄڵ糡Á¦¶ÔС³µËù×öµÄ¹¦132J£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿