ÌâÄ¿ÄÚÈÝ
18£®£¨1£©ÇóæÏ¶ðÈýºÅÔÚ¾àÔÂÇò±íÃæ¸ß¶ÈΪhµÄÔ²¹ìµÀÉÏÔËÐеÄÖÜÆÚT1£»
£¨2£©Ó¦ÓÿªÆÕÀÕµÚÈý¶¨ÂÉ£¬ÇóæÏ¶ðÈýºÅÔÚÍÖÔ²¹ìµÀÉÏÔËÐеÄÖÜÆÚT2£®
·ÖÎö £¨1£©¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬½áºÏæÏ¶ðÈýºÅµÄ¹ìµÀ°ë¾¶ÒÔ¼°Ô¾Ç¨µÄÖÊÁ¿£¬Çó³öæÏ¶ðÈýºÅÔÚÔ²¹ìµÀÉÏÔ˶¯µÄÖÜÆÚ£®
£¨2£©¸ù¾Ý¿ªÆÕÀÕµÚÈý¶¨ÂÉ£¬½áºÏÍÖÔ²¹ìµÀµÄ°ë³¤ÖáÇó³öæÏ¶ðÈýºÅÔÚÍÖÔ²¹ìµÀÉÏÔËÐеÄÖÜÆÚ£®
½â´ð ½â£º£¨1£©¸ù¾Ý$G\frac{Mm}{£¨R+h£©^{2}}=m£¨R+h£©\frac{4{¦Ð}^{2}}{{{T}_{1}}^{2}}$µÃæÏ¶ðÈýºÅÔÚÔ²¹ìµÀÉÏÔËÐеÄÖÜÆÚΪ£ºT1=$\sqrt{\frac{4{¦Ð}^{2}£¨R+h£©^{3}}{GM}}$£®
£¨2£©ÍÖÔ²¹ìµÀµÄ°ë³¤ÖáΪ£ºa=$\frac{h+2R}{2}$£¬
¸ù¾Ý¿ªÆÕÀÕµÚÈý¶¨Âɵãº$\frac{{a}^{3}}{{{T}_{2}}^{2}}=\frac{£¨R+h£©^{3}}{{{T}_{1}}^{2}}$£¬
½âµÃ£ºT2=$\frac{£¨h+2R£©{T}_{1}}{2£¨R+h£©}\sqrt{\frac{h+2R}{2£¨R+h£©}}$£®
´ð£º£¨1£©æÏ¶ðÈýºÅÔÚ¾àÔÂÇò±íÃæ¸ß¶ÈΪhµÄÔ²¹ìµÀÉÏÔËÐеÄÖÜÆÚΪ$\sqrt{\frac{4{¦Ð}^{2}£¨R+h£©^{3}}{GM}}$£®
£¨2£©æÏ¶ðÈýºÅÔÚÍÖÔ²¹ìµÀÉÏÔËÐеÄÖÜÆÚΪ$\frac{£¨h+2R£©{T}_{1}}{2£¨R+h£©}\sqrt{\frac{h+2R}{2£¨R+h£©}}$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦ÕâÒ»ÀíÂÛÒÔ¼°¿ªÆÕÀÕµÚÈý¶¨ÂÉ£¬²¢ÄÜÁé»îÔËÓã¬×¢Òâ¹ìµÀ°ë¾¶ºÍ¸ß¶È²»Í¬£®
| A£® | 0¡«5 sÖ±Éý»úÉÏÉý¹ý³ÌÖмÓËٶȲ»±ä | |
| B£® | 5¡«15 sÖ±Éý»úÍ£ÔÚ¿ÕÖв»¶¯ | |
| C£® | t=20 sʱֱÉý»úµÄËÙ¶È¡¢¼ÓËٶȶ¼ÎªÁã | |
| D£® | 20¡«25 sÖ±Éý»úÊúÖ±ÏòÏÂÔ˶¯ |