ÌâÄ¿ÄÚÈÝ
1£®ÈÈÃôµç×è°üÀ¨ÕýζÈϵÊýµç×èÆ÷£¨PTC£©ºÍ¸ºÎ¶ÈϵÊýµç×èÆ÷£¨NTC£©£®ÕýζÈϵÊýµç×èÆ÷£¨PTC£©ÔÚζÈÉý¸ßʱµç×èÖµÔ½´ó£¬¸ºÔðζÈϵÊýµç×èÆ÷£¨NTC£©ÔÚζÈÉý¸ßʱµç×èֵԽС£¬ÈÈÃôµç×èµÄÕâÖÖÌØÐÔ£¬³£³£Ó¦ÓÃÔÚ¿ØÖƵç·ÖУ®Ä³ÊµÑéС×éÑ¡ÓÃÏÂÁÐÆ÷²Ä̽¾¿Í¨¹ýÈÈÃôµç×èRx£¨³£ÎÂÏÂ×èֵԼΪ10.0¦¸£©µÄµçÁ÷ËæÆäÁ½¶Ëµçѹ±ä»¯µÄÌØµã£®A£®µçÁ÷±íA£¨Á¿³Ì0.6A£¬ÄÚ×èÔ¼0.3¦¸£©
B£®µçѹ±íV£¨Á¿³Ì15.0V£¬ÄÚ×èÔ¼10k¦¸£©
C£®»¬¶¯±ä×èÆ÷R£¨×î´ó×èֵΪ10¦¸£©
D£®»¬¶¯±ä×èÆ÷R¡ä£¨×î´ó×èֵΪ500¦¸£©
E£®µçÔ´E£¨µç¶¯ÊÆ15V£¬ÄÚ×èºöÂÔ£©
F£®µç¼ü¡¢µ¼ÏßÈô¸É
¢ÙʵÑéÖиı们¶¯±ä×èÆ÷»¬Æ¬µÄλÖã¬Ê¹¼ÓÔÚÈÈÃôµç×èÁ½¶ËµÄµçѹ´ÓÁ㿪ʼÖð½¥Ôö´ó£¬ÇëÔÚËùÌṩµÄÆ÷²ÄÖÐÑ¡Ôñ±ØÐèµÄÆ÷²Ä£¬Ó¦Ñ¡ÔñµÄ»¬¶¯±ä×èÆ÷C£®£¨Ö»ÐèÌîдÆ÷²ÄÇ°ÃæµÄ×Öĸ¼´¿É£©
¢ÚÇëÔÚËùÌṩµÄÆ÷²ÄÖÐÑ¡Ôñ±ØÐèµÄÆ÷²Ä£¬ÔÚÐéÏß¿òÄÚ»³ö¸ÃС×éÉè¼ÆµÄµç·ͼ1£®
¢Û¸ÃС×é²â³öÈÈÃôµç×èR1µÄU-IͼÏߣ¨Í¼2£©ÈçÇúÏßIËùʾ£®Çë·ÖÎö˵Ã÷¸ÃÈÈÃôµç×èÊÇPTCÈÈÃôµç×裨ÌîPTC»òNTC£©£®
¢Ü¸ÃС×éÓÖͨ¹ý²éÔÄ×ÊÁϵóöÁËÈÈÃôµç×èR2µÄU-IͼÏßÈçÇúÏßIIËùʾ£®È»ºóÓÖ½«ÈÈÃôµç×èR1¡¢R2·Ö±ðÓëijµç³Ø×éÁ¬³ÉÈçͼ3Ëùʾµç·£®²âµÃͨ¹ýR1ºÍR2µÄµçÁ÷·Ö±ðΪ0.30AºÍ0.60A£¬Ôò¸Ãµç³Ø×éµÄµç¶¯ÊÆÎª10.0V£¬ÄÚ×èΪ6.67¦¸£®£¨½á¹û¾ù±£ÁôÈýλÓÐЧÊý×Ö£©
·ÖÎö ¢ÙΪ·½±ãʵÑé²Ù×÷£¬Ó¦Ñ¡×î´ó×èÖµ½ÏСµÄ»¬¶¯±ä×èÆ÷£®
¢Ú¸ù¾ÝÌâÒâÈ·¶¨»¬¶¯±ä×èÆ÷ÓëµçÁ÷±íµÄ½Ó·¨£¬È»ºó×÷³öʵÑéµç·£®
¢Û¸ù¾ÝͼÏóÓ¦ÓÃÅ·Ä·¶¨ÂÉÅжÏÔª¼þ×èÖµËæÎ¶ȱ仯µÄ¹ØÏµ£¬È»ºóÈ·¶¨Ôª¼þÀàÐÍ£®
¢Ü¸ù¾ÝʵÑéÊý¾Ý£¬Ó¦ÓÃÅ·Ä·¶¨ÂÉÇó³öµçÔ´µç¶¯ÊÆÓëÄÚ×裮
½â´ð ½â£º¢ÙΪ·½±ãʵÑé²Ù×÷£¬»¬¶¯±ä×èÆ÷ӦѡC£»
¢Ú¼ÓÔÚÈÈÃôµç×èÁ½¶ËµÄµçѹ´ÓÁ㿪ʼÖð½¥Ôö´ó£¬»¬¶¯±ä×èÆ÷Ó¦²ÉÓ÷Öѹ½Ó·¨£¬ÓÉÓÚÈÈÃôµç×èµÄ×èֵԶСÓÚµçѹ±íÄÚ×裬ËùÒÔµçÁ÷±íÓ¦ÓÃÍâ½Ó·¨£¬µç·ͼÈçͼËùʾ£º![]()
¢ÛÓÉͼ2ÇúÏßIËùʾͼÏß¿ÉÖª£¬ËæµçѹÔö´ó£¬µçÁ÷Ôö´ó£¬µç×èʵ¼Ê¹¦ÂÊÔö´ó£¬Î¶ÈÉý¸ß£¬µçѹÓëµçÁ÷±ÈÖµÔö´ó£¬µç×è×èÖµÔö´ó£¬¼´ËæÎ¶ÈÉý¸ß£¬µç×è×èÖµÔö´ó£¬¸Ãµç×èÊÇÕýζÈϵÊý£¨PTC£©ÈÈÃôµç×裮
¢ÜÔڱպϵç·ÖУ¬µçÔ´µç¶¯ÊÆ£ºE=U+Ir£¬
ÓÉͼ2ÇúÏßIIËùʾ¿ÉÖª£¬µçÁ÷Ϊ0.3Aʱ£¬µç×èR1Á½¶ËµçѹΪ8V£¬µçÁ÷Ϊ0.60Aʱ£¬µç×èR2Á½¶ËµçѹΪ6.0V£¬ÔòÓУº
E=8+0.3r£¬
E=6+0.6r£¬
½âµÃ£ºE=10.0V£¬r=6.67¦¸£»
¹Ê´ð°¸Îª£º¢ÙC£»¢Úµç·ͼÈçͼËùʾ£»¢ÛPTC£»¢Ü10.0£¬6.67£®
µãÆÀ ±¾Ì⿼²éÁËʵÑéÆ÷²ÄµÄÑ¡Ôñ¡¢Éè¼ÆÊµÑéµç·¡¢Åжϵç×èÀàÐÍ¡¢ÇóµçÔ´µç¶¯ÊÆÓëÄÚ×裻ȷ¶¨»¬¶¯±ä×èÆ÷ÓëµçÁ÷±í½Ó·¨ÊÇÕýÈ·Éè¼ÆÊµÑéµç·µÄ¹Ø¼ü£»µ±ÊµÑéÒªÇóµçѹ´ÓÁãµ÷ʱ£¬±ä×èÆ÷Ó¦²ÉÓ÷Öѹʽ½Ó·¨£¬±ä×èÆ÷µÄ×èֵԽСԽ·½±ãµ÷½Ú£»µ±´ý²âµç×è×èֵԶСÓÚµçѹ±íÄÚ×èʱµçÁ÷±í²ÉÓÃÍâ½Ó·¨£®
| A£® | ad¼äµÄµçѹΪ$\frac{BLv}{3}$ | |
| B£® | Ïß¿òËùÊܰ²ÅàÁ¦µÄºÏÁ¦Îª$\frac{2{B}^{2}{L}^{2}v}{R}$ | |
| C£® | Á÷¹ýÏß¿ò½ØÃæµÄµçÁ¿Îª$\frac{2B{L}^{2}}{R}$ | |
| D£® | Ïß¿òÖеĵçÁ÷ÔÚad±ß²úÉúµÄÈÈÁ¿Îª$\frac{2{B}^{2}{L}^{3}v}{3R}$ |