ÌâÄ¿ÄÚÈÝ
£¨1£©Îï¿éAÉÏÉýʱµÄ×î´óËÙ¶È£»
£¨2£©ÈôB²»ÄÜ×ŵأ¬Çó
| M | m |
£¨3£©ÈôM=m£¬ÇóÎï¿éAÉÏÉýµÄ×î´ó¸ß¶È£®
·ÖÎö£º£¨1£©µ±CÎïÌå¸Õ×ŵØÊ±£¬AÎïÌåËÙ¶È×î´ó£¬¸ù¾Ýϵͳ»úеÄÜÊØºãÁÐʽÇó½â£»
£¨2£©CÂ䵨ºó£¬¸ù¾ÝABÁ½ÎïÌåϵͳ»úеÄÜÊØºã£¬Çó³öBÇ¡ºÃÂ䵨µÄÁÙ½çÌõ¼þ£¬ÔÙÅжÏMÓëmµÄ¹ØÏµ£»
£¨3£©Îï¿éC×ŵغó£¬AÒÔËÙ¶ÈvÔÈËÙÉÏÉýÖ±µ½BÎï¿éÂ䵨£¬´Ëºó×öÊúÖ±ÉÏÅ×Ô˶¯£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽÇó½â£®
£¨2£©CÂ䵨ºó£¬¸ù¾ÝABÁ½ÎïÌåϵͳ»úеÄÜÊØºã£¬Çó³öBÇ¡ºÃÂ䵨µÄÁÙ½çÌõ¼þ£¬ÔÙÅжÏMÓëmµÄ¹ØÏµ£»
£¨3£©Îï¿éC×ŵغó£¬AÒÔËÙ¶ÈvÔÈËÙÉÏÉýÖ±µ½BÎï¿éÂ䵨£¬´Ëºó×öÊúÖ±ÉÏÅ×Ô˶¯£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽÇó½â£®
½â´ð£º½â£º£¨1£©A¡¢B¡¢CÈýÎï¿éϵͳ»úеÄÜÊØºã£®B¡¢CϽµL£¬AÉÏÉýLʱ£¬AµÄËÙ¶È´ï×î´ó£®
2mgL-MgL=
(M+2m)v2
v=
¼´Îï¿éAÉÏÉýʱµÄ×î´óËÙ¶ÈΪ
£®
£¨2£©µ±C×ŵغó£¬ÈôBÇ¡ÄÜ×ŵأ¬¼´BÎï¿éϽµLʱËÙ¶ÈΪÁ㣮A¡¢BÁ½ÎïÌåϵͳ»úеÄÜÊØºã£®
MgL-mgL=
(M+m)
½«v´úÈ룬ÕûÀíµÃ£ºM=
m
ËùÒÔ
£¾
ʱ£¬BÎï¿é½«²»»á×ŵأ®
£¨3£©ÓÉÓÚM=m£¬CÎï¿é×ŵغó£¬AÒÔËÙ¶ÈvÔÈËÙÉÏÉýÖ±µ½BÎï¿éÂ䵨£¬´Ëºó×öÊúÖ±ÉÏÅ×Ô˶¯£¬ÉèÉÏÉýµÄ¸ß¶ÈΪh£¬Ôò
h=
=
=
¡¡
¹ÊÎïÌåAÉÏÉýµÄ×î´ó¸ß¶ÈH=2L+h=
L£®
2mgL-MgL=
| 1 |
| 2 |
v=
|
¼´Îï¿éAÉÏÉýʱµÄ×î´óËÙ¶ÈΪ
|
£¨2£©µ±C×ŵغó£¬ÈôBÇ¡ÄÜ×ŵأ¬¼´BÎï¿éϽµLʱËÙ¶ÈΪÁ㣮A¡¢BÁ½ÎïÌåϵͳ»úеÄÜÊØºã£®
MgL-mgL=
| 1 |
| 2 |
| v | 2 |
½«v´úÈ룬ÕûÀíµÃ£ºM=
| 2 |
ËùÒÔ
| M |
| m |
| 2 |
£¨3£©ÓÉÓÚM=m£¬CÎï¿é×ŵغó£¬AÒÔËÙ¶ÈvÔÈËÙÉÏÉýÖ±µ½BÎï¿éÂ䵨£¬´Ëºó×öÊúÖ±ÉÏÅ×Ô˶¯£¬ÉèÉÏÉýµÄ¸ß¶ÈΪh£¬Ôò
h=
| ||
| 2g |
| 2(2m-M)L |
| 2g(2m+M) |
| L |
| 3 |
¹ÊÎïÌåAÉÏÉýµÄ×î´ó¸ß¶ÈH=2L+h=
| 7 |
| 3 |
µãÆÀ£º±¾Ìâ¹Ø¼üÊÇÒªÁé»îµØÑ¡ÔñÑо¿¶ÔÏó£¬ËäÈ»µ¥¸öÎïÌå»úеÄܲ»Êغ㣬µ«ÏµÍ³»úеÄÜÊØºã£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿