题目内容
(1)物体与斜面间的动摩擦因数μ;
(2)从撤掉力F开始1.5s末物体的速度v;
(3)什么时候物体经过离斜面底部4.5m处.
分析:(1)根据位移公式求出前2s内物体的加速度,由牛顿第二定律和摩擦力公式求出物体与斜面间的动摩擦因数μ;
(2)物体先沿斜面向上做匀加速运动,撤去F后做匀减速运动,再向下做匀加速运动.由牛顿第二定律求出撤去F后物体向上匀减速运动的加速度和时间,进一步求出其位移,根据牛顿第二定律求出向下运动的加速度,进一步求出向下加速运动的时间和位移,再进一步求解总位移和路程.
(2)物体先沿斜面向上做匀加速运动,撤去F后做匀减速运动,再向下做匀加速运动.由牛顿第二定律求出撤去F后物体向上匀减速运动的加速度和时间,进一步求出其位移,根据牛顿第二定律求出向下运动的加速度,进一步求出向下加速运动的时间和位移,再进一步求解总位移和路程.
解答:解:(1)设前2s内加速度为a1,由题意:S1=
a1t12
代入数据有:4=
a1×22
解得:a1=2 m/s2
根据牛顿第二定律有:F-μmgcos37°-mgsin37°=ma1
μ=
代入数据解得:μ=0.25
(2)在F被撤消时,物体的速度:v1=a1t1=2×2m/s=4m/s
在F被撤消后,物体还要继续向上运动,且是做匀减速运动,
设这过程的加速度为a2,
匀减速运动的时间为t2,则有:
mgsin37°+μmgcos37°=ma2
解得:a2=8m/s2
又v1=a2t2
解得t2=0.5s
之后物体沿斜面向下做匀加速直线运动,
对物体受力分析有:mgsin37°-μmgcos37°=ma3解得:a3=4m/s2
再经过t3=1 s
物体的速度:v2=a3t3=4×1=4m/s
(3)①当物体的运动方向向上经过离斜面底部4.5m处时,向上减速的时间为t 4,则:
s4=4.5-4=0.5m
又:s4=v1t4-
a2
代入数据得:t4=0.25s
总时间为:t上=t1+t4═2.25s
②物体上升的最大位移:xm=
=
=1m
物体上升到最高点的时间:t5=
=0.5s
所以物体上升到最高点后,还要下降:s6=s1+xm-4.5=0.5m
设下降0.5m需要的时间为t6,发生位移为:S6=
a3t62=0.5m
代入数据解得:t6=0.5s
所以总时间:t下=t1+t5+t6=3s
答:(1)物体与斜面间的动摩擦因数μ为0.25;
(2)从撤掉力F开始1.5s末物体的速度是4m/s.
(3)物体经过离斜面底部4.5m处,向上运动时的时间是2.25s,下降时的时间是3s.
| 1 |
| 2 |
代入数据有:4=
| 1 |
| 2 |
解得:a1=2 m/s2
根据牛顿第二定律有:F-μmgcos37°-mgsin37°=ma1
μ=
| F-mgsin37°-ma1 |
| mgcos37° |
代入数据解得:μ=0.25
(2)在F被撤消时,物体的速度:v1=a1t1=2×2m/s=4m/s
在F被撤消后,物体还要继续向上运动,且是做匀减速运动,
设这过程的加速度为a2,
匀减速运动的时间为t2,则有:
mgsin37°+μmgcos37°=ma2
解得:a2=8m/s2
又v1=a2t2
解得t2=0.5s
之后物体沿斜面向下做匀加速直线运动,
对物体受力分析有:mgsin37°-μmgcos37°=ma3解得:a3=4m/s2
再经过t3=1 s
物体的速度:v2=a3t3=4×1=4m/s
(3)①当物体的运动方向向上经过离斜面底部4.5m处时,向上减速的时间为t 4,则:
s4=4.5-4=0.5m
又:s4=v1t4-
| 1 |
| 2 |
| t | 2 4 |
代入数据得:t4=0.25s
总时间为:t上=t1+t4═2.25s
②物体上升的最大位移:xm=
0-
| ||
| -2a2 |
| 0-42 |
| -2×8 |
物体上升到最高点的时间:t5=
| 0-v1 |
| -a2 |
所以物体上升到最高点后,还要下降:s6=s1+xm-4.5=0.5m
设下降0.5m需要的时间为t6,发生位移为:S6=
| 1 |
| 2 |
代入数据解得:t6=0.5s
所以总时间:t下=t1+t5+t6=3s
答:(1)物体与斜面间的动摩擦因数μ为0.25;
(2)从撤掉力F开始1.5s末物体的速度是4m/s.
(3)物体经过离斜面底部4.5m处,向上运动时的时间是2.25s,下降时的时间是3s.
点评:本题运用牛顿第二定律和运动学公式结合求解动力学问题,要学会分析过程,把握住各个过程之间的联系.
练习册系列答案
相关题目