ÌâÄ¿ÄÚÈÝ
4£®| A£® | ´ÓС¿×S½øÈë´Å³¡µÄÁ£×ÓËÙ¶È´óСһ¶¨ÏàµÈ | |
| B£® | ´ÓС¿×S½øÈë´Å³¡µÄÁ£×Ó¶¯ÄÜÒ»¶¨ÏàµÈ | |
| C£® | ´òµ½½ºÆ¬ÉÏͬһµãµÄÁ£×ÓËÙ¶È´óСһ¶¨ÏàµÈ | |
| D£® | ´òµ½½ºÆ¬ÉÏλÖþàÀëOµãÔ½Ô¶µÄÁ£×Ó£¬±ÈºÉԽС |
·ÖÎö ´øµçÁ£×ÓÔڵ糡ÖУ¬Ôڵ糡Á¦×öÕý¹¦µÄÇé¿öÏ£¬±»¼ÓËÙÔ˶¯£»ºó´¹Ö±Óڵ糡Ïߣ¬Ôڵ糡Á¦ÌṩÏòÐÄÁ¦×÷ÓÃÏ£¬×öÔÈËÙÔ²ÖÜÔ˶¯£»×îºó½øÈëÔÈÇ¿´Å³¡£¬ÔÚÂåÂ××ÈÁ¦×÷ÓÃÏ£¬×öÔÈËÙÔ²ÖÜÔ˶¯£»¸ù¾Ý¶¯Äܶ¨ÀíºÍÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽ·ÖÎö¼´¿É£®
½â´ð ½â£ºA¡¢Ö±Ïß¼ÓËÙ¹ý³Ì£¬¸ù¾Ý¶¯Äܶ¨Àí£¬ÓУº
qU=$\frac{1}{2}$mv2-$\frac{1}{2}m{v}_{0}^{2}$ ¢Ù
µç³¡ÖÐÆ«×ª¹ý³Ì£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓУº
qE=m$\frac{{v}^{2}}{R}$ ¢Ú
´Å³¡ÖÐÆ«×ª¹ý³Ì£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓУº
qvB=m$\frac{{v}^{2}}{r}$ ¢Û
A¡¢ÓÉ¢Ù¢Ú½âµÃ£º
v=$\sqrt{\frac{2qU}{m}+{v}_{0}^{2}}$ ¢Ü
R=$\frac{2qU+m{v}_{0}^{2}}{qE}$ ¢Ý
ÓÉ¢Ýʽ£¬Ö»ÒªÂú×ãR=$\frac{2qU+m{v}_{0}^{2}}{qE}$£¬ËùÓÐÁ£×Ó¶¼¿ÉÒÔÔÚ»¡ÐÎµç³¡ÇøÍ¨¹ý£»
ÓÉ¢Üʽ£¬±ÈºÉ²»Í¬µÄÁ£×Ó´ÓС¿×S½øÈë´Å³¡µÄÁ£×ÓËÙ¶È´óС²»Ò»¶¨Ïàͬ£¬¹ÊA´íÎó£»
B¡¢ÓÉ¢Ùʽ£¬´ÓС¿×S½øÈë´Å³¡µÄÁ£×Ó¶¯ÄÜΪqU£¬¹Ê²»Í¬µçÁ¿µÄÁ£×ӵ͝Äܲ»Í¬£¬¹ÊB´íÎó£»
C¡¢ÓɢۢܽâµÃ£ºr=$\frac{m}{Bq}\sqrt{\frac{2qU}{m}+{v}_{0}^{2}}$£¬´òµ½½ºÆ¬ÉÏͬһµãµÄÁ£×ӵıȺÉÒ»¶¨ÏàµÈ£»
ÓÉ¢Üʽ£¬±ÈºÉÏàͬ£¬¹ÊÁ£×ÓµÄËÙ¶ÈÏàͬ£¬¹ÊCÕýÈ·£»
D¡¢ÓɢۢܽâµÃ£ºr=$\frac{m}{Bq}\sqrt{\frac{2qU}{m}+{v}_{0}^{2}}$£¬¹Ê´òµ½½ºÆ¬ÉÏλÖþàÀëOµãÔ½Ô¶µÄÁ£×Ó£¬±ÈºÉԽС£¬¹ÊDÕýÈ·£»
¹ÊÑ¡£ºCD£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·Á£×ÓµÄÔ˶¯¹æÂÉ£¬È»ºó·Ö½×¶Î¸ù¾Ý¶¯Äܶ¨ÀíºÍÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽ·ÖÎö£®
| A£® | ·ÉÐÐÔ±´ò¿ª½µÂäÉ¡¼õËÙϽµÊ± | |
| B£® | ×ÔÐгµÔ˶¯Ô±Æï¹ý¹°ÇŶ¥¶Ëʱ | |
| C£® | ÌøË®Ô˶¯Ô±±»Ìø°åµ¯Æð£¬Àë¿ªÌø°åÏòÉÏÔ˶¯Ê± | |
| D£® | ÓԱÔÚ¿Õ¼äÕ¾ÖÐÏòÉÏÆ®ÒÆÊ± |
| A£® | µç´Å²¨ÖÐ×îÈÝÒ×±íÏÖ³ö¸ÉÉæ¡¢ÑÜÉäÏÖÏóµÄÊÇÎÞÏߵ粨 | |
| B£® | ×ÏÍâÏßÄÜ´ÙʹÌåÄÚάÉúËØDµÄºÏ³É | |
| C£® | ÔÚ¿¾ÏäÖÐÄÜ¿´¼ûÒ»ÖÖµºìÉ«µÄ¹âÏߣ¬ÊǵçÈÈË¿·¢³öµÄºìÍâÏß | |
| D£® | ºìÍâÏßµÄÏÔÖø×÷ÓÃÊÇÈÈ×÷Óã¬Î¶Ƚϵ͵ÄÎïÌå²»ÄÜ·øÉäºìÍâÏß |
| A£® | Å£¶Ù·¢ÏÖÁËÍòÓÐÒýÁ¦¶¨ÂÉ£¬²¢ÓÃʵÑé²â¶¨ÁËÍòÓÐÒýÁ¦³£Á¿ | |
| B£® | ÔªµçºÉeµÄÊýÖµ×îÔçÊÇÓÉ¿âÂØ²âµÃµÄ | |
| C£® | ÑÇÀïÊ¿¶àµÂÈÏΪÁ¦ÊÇά³ÖÎïÌåÔ˶¯×´Ì¬µÄÔÒò | |
| D£® | °²Åà×ܽᲢȷÈÏÁËÕæ¿ÕÖÐÁ½¸ö¾²Ö¹µãµçºÉÖ®¼äµÄÏ໥×÷ÓùæÂÉ |
| A£® | Îï¿éA¶ÔÐ±ÃæµÄĦ²ÁÁ¦¿ÉÄܼõС | B£® | Îï¿éA¶ÔÐ±ÃæµÄѹÁ¦¿ÉÄܲ»±ä | ||
| C£® | Ð±Ãæ¶ÔµØÃæµÄĦ²ÁÁ¦¿ÉÄܲ»±ä | D£® | Ð±Ãæ¶ÔµØÃæµÄѹÁ¦Ò»¶¨Ôö´ó |