题目内容

如图所示是自行车传动结构的示意图,其中Ⅰ是半径为r1的牙盘(大齿轮),Ⅱ是半径为r2的飞轮(小齿轮),Ⅲ是半径为r3的后轮,假设脚踏板的转速为n(r/s),则自行车前进的速度为( )

A.
B.
C.
D.
【答案】分析:大齿轮和小齿轮靠链条传动,线速度相等,根据半径关系可以求出小齿轮的角速度.后轮与小齿轮具有相同的角速度,若要求出自行车的速度,需要知道后轮的半径,抓住角速度相等,求出自行车的速度.
解答:解:转速为单位时间内转过的圈数,因为转动一圈,对圆心转的角度为2π,所以ω=2πnrad/s,因为要测量自行车前进的速度,即车轮III边缘上的线速度的大小,根据题意知:轮I和轮II边缘上的线速度的大小相等,据v=Rω可知:r1ω1=R2ω2,已知ω1=2πn,则轮II的角速度ω2=ω1.因为轮II和轮III共轴,所以转动的ω相等即ω32,根据v=Rω可知,v=r3ω3=
故选C
点评:解决本题的关键知道靠链条传动,线速度相等,共轴转动,角速度相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网