ÌâÄ¿ÄÚÈÝ

9£®ÈçͼËùʾ£¬ÔÚxOyÆ½ÃæÄÚÓÐÁ½¸öÓнç´Å³¡£¬´Å¸ÐӦǿ¶È´óB1=B£¬B2=$\frac{B}{2}$£¬ËüÃǵı߽çÏßÓëyÖḺ·½Ïò³Éijһ½Ç¶È¦È£¬ÖÊÁ¿Îªm´øµçÁ¿Îª+qµÄÁ£×Ó£¬ÒÔËÙ¶Èv´ÓyÖáÉϵÄAµãÑØxÖáÕý·½ÏòÈëÉ䣬ÒÑÖª$\overline{OA}$=$\frac{mv}{2qB}$£¬Á£×ÓµÚ¶þ´Î¾­¹ýxÖáʱËÙ¶È·½ÏòÓëxÖá´¹Ö±£®²»¼ÆÁ£×ÓÖØÁ¦£®Çó£º
£¨1£©µÚ¶þ´Î¾­¹ýxÖáʱµÄ×ø±ê£»
£¨2£©tan¦ÈµÄÖµÒÔ¼°´ÓAµã³ö·¢µ½µÚ¶þ´Î¾­¹ýxÖáËù¾­ÀúµÄʱ¼ä£»
£¨3£©ÔÚµÚ¶þÏóÏÞµÄÄ³ÇøÓòÄÚ£¨°üº¬³öÉäµã£©¼ÓÒ»ÔÈÇ¿µç³¡£¬Ê¹Á£×ÓÒÔÓë³ö·¢Ê±ÏàͬµÄËÙ¶ÈÓֻص½Aµã£®ÇóËù¼Óµç³¡µÄ×îСֵºÍ·½Ïò£®

·ÖÎö ¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦Çó³öÔÚÁ½´Å³¡Öеİ뾶£¬»­³öÂú×ãÌâÒâµÄÔ˶¯¹ì¼££¬°ë¾¶${R}_{2}^{\;}$ÊÇ${R}_{1}^{\;}$µÄÁ½±¶£¬¸ù¾Ý¼¸ºÎ¹ØÏµÇó³ö¼Ð½ÇºÍ±ß£¬¿ÉÒÔºÜ˳ÀûµÄÇó³ö½»µã×ø±ê£¬Çóʱ¼äÕÒ³öÁ½¶ÎÔ²»¡¶ÔµÄÔ²ÐĽǣ¬ÀûÓÃ$t=\frac{¦È}{360}T$Çó½â£¬×îºóÒ»Îʶ¯Äܶ¨Àí·ÖÎö³öµç³¡Á¦Ã»ÓÐ×ö¹¦£¬³öÉäµãºÍAµãÔÚÒ»µÈÊÆÃæÉÏ£¬ÔËÓÃÔ˶¯µÄºÏ³ÉÓë·Ö½â˳ÀûÇó½â

½â´ð ½â£º£¨1£©´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦$qvB=m\frac{{v}_{\;}^{2}}{R}$µÃ$R=\frac{mv}{qB}$£¬ÔÚ${B}_{1}^{\;}$´Å³¡Öа뾶${R}_{1}^{\;}=\frac{mv}{qB}$£¬${B}_{2}^{\;}$´Å³¡Öа뾶${R}_{2}^{\;}=\frac{2mv}{qB}$£¬»­³ö´øµçÁ£×ÓµÄÔ˶¯¹ì¼£Í¼£¬Èçͼ
ÔڴŸÐӦǿ¶ÈΪ${B}_{1}^{\;}$µÄÔÈÇ¿´Å³¡ÖУ¬Ô²ÐÄÔÚB£¬°ë¾¶${R}_{1}^{\;}$£¬ÔڴŸÐӦǿ¶ÈΪ${B}_{2}^{\;}$µÄÔÈÇ¿´Å³¡ÖУ¬Ô²ÐÄΪC£¬°ë¾¶${R}_{2}^{\;}$
¸ù¾ÝÌâÒâÖª$\overline{OA}=\frac{mv}{2qB}$£¬ÓÉ$\overline{OB}=\frac{mv}{2qB}$£¬$\overline{OC}=\frac{\sqrt{3}}{2}\frac{mv}{qB}$
µÚ¶þ´Î¾­¹ýxÖáʱµÄ½»µãµ½Ô­µãµÄ¾àÀë${R}_{2}^{\;}+\overline{OC}=\frac{2mv}{qB}+\frac{\sqrt{3}}{2}\frac{mv}{qB}=\frac{mv}{2qB}£¨4+\sqrt{3}£©$
ËùÒÔµÚ¶þ´Î¾­¹ýxÖáµÄ×ø±ê$£¨-\frac{mv}{2qB}£¨4+\sqrt{3}£©£¬0£©$
£¨2£©Óɼ¸ºÎ¹ØÏµÖª¡ÏOBC=60¡ã£¬ËùÒÔ$tan¦È=\frac{{R}_{1}^{\;}sin60¡ã}{\overline{OB}+{R}_{1}^{\;}cos60¡ã}=\frac{\sqrt{3}}{2}$
Óɼ¸ºÎ¹ØÏµÖª£¬ÔÚ${B}_{1}^{\;}$´Å³¡ÖеÄÔ²ÐĽÇ120¡ã£¬ÔÚ${B}_{2}^{\;}$´Å³¡ÖеÄÔ²ÐĽÇ150¡ã
${t}_{1}^{\;}=\frac{120¡ã}{360¡ã}{T}_{1}^{\;}=\frac{1}{3}\frac{2¦Ðm}{qB}=\frac{2¦Ðm}{3qB}$£¬${t}_{2}^{\;}=\frac{150¡ã}{360¡ã}{T}_{2}^{\;}=\frac{5}{12}\frac{2¦Ðm}{q\frac{B}{2}}=\frac{5¦Ðm}{3qB}$
ËùÒÔµÚ¶þ´Î¾­¹ýxÖáËù¾­ÀúµÄʱ¼ä$t={t}_{1}^{\;}+{t}_{2}^{\;}=\frac{7¦Ðm}{3qB}$
£¨3£©¸ù¾Ý¶¯Äܶ¨ÀíÖª´Ó³öÉäµãµ½·µ»ØAµã¶¯Äܲ»±ä£¬µç³¡Á¦Ã»ÓÐ×ö¹¦£¬Öª³öÉäµãºÍAµãÁ¬ÏßΪһµÈÊÆÃæ£¬µç³¡Ç¿¶È·½Ïò´¹Ö±Á¬ÏßбÏòÏÂ
ˮƽ·½Ïò£º${v}_{\;}^{2}=2\frac{q{E}_{x}^{\;}}{m}\frac{mv}{2qB}£¨4+\sqrt{3}£©$½âµÃ${E}_{x}^{\;}=£¨4+\sqrt{3}£©vB$
ÊúÖ±·½Ïò£º${v}_{\;}^{2}=2\frac{q{E}_{y}^{\;}}{m}\frac{mv}{2qB}$½âµÃ${E}_{y}^{\;}=vB$
µç³¡Ç¿¶ÈµÄ×îСֵ$E=\sqrt{{E}_{x}^{2}+{E}_{y}^{2}}=\sqrt{£¨4+\sqrt{3}£©_{\;}^{2}+1}vB$£¬·½Ïò´¹Ö±³öÉäµãºÍAÁ¬ÏßбÏòÏÂ
´ð£º£¨1£©µÚ¶þ´Î¾­¹ýxÖáʱµÄ×ø±ê$£¨-\frac{mv}{2qB}£¨4+\sqrt{3}£©£¬0£©$£»
£¨2£©$tan¦È=\frac{\sqrt{3}}{2}$´ÓAµã³ö·¢µ½µÚ¶þ´Î¾­¹ýxÖáËù¾­ÀúµÄʱ¼ä$\frac{7¦Ðm}{3qB}$£»
£¨3£©ÔÚµÚ¶þÏóÏÞµÄÄ³ÇøÓòÄÚ£¨°üº¬³öÉäµã£©¼ÓÒ»ÔÈÇ¿µç³¡£¬Ê¹Á£×ÓÒÔÓë³ö·¢Ê±ÏàͬµÄËÙ¶ÈÓֻص½Aµã£®ÇóËù¼Óµç³¡µÄ×îСֵ$\sqrt{£¨4+\sqrt{3}£©_{\;}^{2}+1}vB$ºÍ·½Ïò´¹Ö±³öÉäµãºÍAµãÁ¬ÏßбÏòÏ£®

µãÆÀ ±¾ÌâǰÁ½Ð¡ÎʱȽϻù´¡£¬µÚÈýСÎÊÄѶȽϴó£¬ÐèÒª·ÖÎöÇå³þ£¬²»ÄÜ´íÎóµÄµ±³ÉÀàÆ½Å×Ô˶¯È¥×ö£¬ÕÆÎÕ»ù±¾½âÌâ˼ÏëºÜ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø