题目内容
11.(1)推力F的大小?
(2)物体在前3s内滑行的位移及3s末的速度?
(3)物体在5s内滑行的总位移?
分析 (1)木块做匀加速运动,已知加速度,分析木块的受力情况,运用牛顿第二定律求推力F的大小;
(2)根据位移时间公式求出前3s内木块的位移,由速度时间公式求出撤去F时木块的速度;
(3)根据牛顿第二定律求出撤去F后木块的加速度,判断木块的运动情况,由速度位移公式求出撤去F后滑行的位移,从而求得总位移.
解答 解:(1)在前3s内,木块的受力情况如图,由正交分解法得:![]()
Fcosθ-f=ma…①
N=G+Fsinθ…②
又 f=μN…③
联立①②③可解得:F=10N.
(2)前3s内木块的位移:
x1=$\frac{1}{2}$at2=$\frac{1}{2}$×1.6×32m=7.2m.
3s末的速度:
v=at=1.6×3=4.8m/s.
(3)撤去外力木块的加速度大小:
a′=$\frac{μmg}{m}$=μg=0.4×10m/s2=4m/s2;
撤去外力后,木块停止运动的时间:
t′=$\frac{v}{a′}$=$\frac{4.8}{4}$s=1.2s,
由速度位移公式得,滑行的位移为:
x2=$\frac{{v}^{2}}{2a′}$=$\frac{4.{8}^{2}}{2×4}$m=2.88m,
所以木块5s内发生的总位移:
x=x1+x2=7.2m+2.88m=10.08m.
答:(1)推力F的大小是10N;
(2)物体在前3s内滑行的位移为7.2m;3s末的速度为4.8m/s;
(3)物体在5s内滑行的总位移是10.08m.
点评 本题综合考查牛顿第二定律以及运动学公式的综合应用,要注意正确分析受力和运动过程,知道加速度是联系力和运动的桥梁,再根据牛顿第二定律和运动学公式分析即可正确解题.
练习册系列答案
相关题目
2.关于速度与加速度的说法中,正确的是( )
| A. | 物体的速度大,加速度也一定大 | |
| B. | 物体的加速度变小,速度也一定变小 | |
| C. | 物体的速度变化大,加速度也一定大 | |
| D. | 物体的速度变化快,加速度一定大 |
3.
若一质点从 t=0 开始由原点出发沿直线运动,其速度一时间图象如图所示,则该物体质点( )
| A. | t=1 s 时离原点最远 | B. | t=2 s 时离原点最远 | ||
| C. | t=3 s 时回到原点 | D. | t=2 s 时回到原点 |
16.
如图所示,两根足够长的直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.底端接有阻值为R的电阻.一根质量为m也为R的均匀直金属杆ab放在两导轨上,并与导轨垂直,导轨的电阻忽略不计.整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向上.让杆ab沿轨道由静止开始下滑,导轨和杆ab接触良好,不计它们之间的摩擦、杆ab由静止下滑距离S时,已处于匀速运动(重力加速度为g).则( )
| A. | 匀速运动时杆ab的速度为$\frac{2mgRsinθ}{{B}^{2}{L}^{2}}$ | |
| B. | 匀速运动时杆ab受到的安培力大小为mgtanθ | |
| C. | 杆ab由静止下滑距离S过程中,克服安培力做功为mgsinθ | |
| D. | 杆ab由静止下滑距离S过程中,通过电阻R的电荷量为$\frac{BLS}{2R}$ |
3.关于理想气体,下列说法正确的是( )
| A. | 温度极低的气体也是理想气体 | |
| B. | 压强极大的气体也遵从气体实验定律 | |
| C. | 理想气体是对实际气体的抽象化模型 | |
| D. | 理想气体分子间的相互作用力不可忽略 |
20.
如图所示,电梯的水平地板上放置一质量为m的物体,电梯质量为M.在钢索的拉力作用下,电梯由静止开始竖直向上加速运动,当上升高度为H时,电梯的速度为v,则在这个过程中( )
| A. | 电梯地板对物体的支持力所做的功等于mv2 | |
| B. | 电梯地板对物体的支持力所做的功等于$\frac{1}{2}$mv2+mgH | |
| C. | 钢索的拉力所做的功等于Mv2+MgH | |
| D. | 钢索的拉力所做的功等于$\frac{1}{2}$(M+m)v2+(M+m)gH |