ÌâÄ¿ÄÚÈÝ
13£®ÈçͼËùʾ£¬¿Õ¼ä´æÔÚÒ»ÓнçÔÈÇ¿´Å³¡£¬´Å³¡·½ÏòÊúÖ±ÏòÏ£¬´Å¸ÐӦǿ¶ÈB=0.5T£¬´Å³¡µÄ±ß½çÈçͼ1Ëùʾ£¬Ôڹ⻬¾øÔµË®Æ½ÃæÄÚÓÐÒ»³¤·½ÐνðÊôÏß¿ò£¬ab±ß³¤ÎªL1=0.2m£¬bc±ß³¤ÎªL2=0.75m£¨Ð¡Óڴų¡¿í¶È£©£¬Ïß¿òÖÊÁ¿m=0.1kg£¬µç×èR=0.1¦¸£¬ÔÚһˮƽÏòÓÒµÄÍâÁ¦F×÷ÓÃÏ£¬Ïß¿òÒ»Ö±×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¼ÓËÙ¶È´óСΪa=2m/s2£¬ab±ßµ½´ï´Å³¡×ó±ß½çʱÏß¿òµÄËÙ¶Èv0=1m/s£¬²»¼Æ¿ÕÆø×èÁ¦£®£¨1£©ÈôÏß¿ò½øÈë´Å³¡¹ý³ÌÖÐÍâÁ¦F×ö¹¦ÎªWF=0.27J£¬ÇóÔڴ˹ý³ÌÖÐÏß¿ò²úÉúµÄ½¹¶úÈÈQ£®
£¨2£©ÒÔab±ß¸Õ½øÈë´Å³¡Ê±¿ªÊ¼¼ÆÊ±£¬ÔÚͼ2Öл³öab±ß³ö´Å³¡Ö®Ç°£¬ÍâÁ¦FËæÊ±¼ät±ä»¯µÄͼÏ󣨱ê³ö±ØÒªµÄ×ø±êÖµ²¢Ð´³öÏà¹Ø¼ÆË㹫ʽ£©£®
·ÖÎö £¨1£©Ïß¿ò×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÓÉÔȱäËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ-Ëٶȹ«Ê½Çó³öcd¼´½«½øÈë´Å³¡Ê±Ïß¿òµÄËÙ¶È£¬ÓÉÄÜÁ¿Êغ㶨ÂÉ¿ÉÒÔÇó³öÏß¿ò²úÉúµÄ½¹¶úÈÈ£®
£¨2£©ÓÉ·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉÇó³öµç¶¯ÊÆ£¬ÓÐÅ·Ä·¶¨ÂÉÇó³öµçÁ÷£¬È»ºó½áºÏ°²ÅàÁ¦µÄ¹«Ê½ÒÔ¼°Å£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÇó³öÀÁ¦ËæÊ±¼äµÄ±ä»¯¹ØÏµ£®
½â´ð ½â£º£¨1£©Ïß¿ò×öÔȼÓËÙÖ±ÏßÔ˶¯£¬µ±cd¼´½«½øÈë´Å³¡Ê±£º$2a{L}_{2}={v}^{2}-{v}_{0}^{2}$
´úÈëÊý¾ÝµÃ£ºv=2m/s
ÀÁ¦×öµÄ¹¦×ª»¯ÎªÏß¿òµÄ¶¯ÄÜÒÔ¼°²úÉúµÄ½¹¶úÈÈ£¬ÓÉÄÜÁ¿Êغ㶨ÂɵãºWF=Q+$\frac{1}{2}m{v}^{2}-\frac{1}{2}m{v}_{0}^{2}$£¬
´úÈëÊý¾Ý½âµÃ£ºQ=0.12J£»
£¨2£©ab¸Õ½øÈë´Å³¡Ê±£ºE0=BL1v0=0.5¡Á0.2¡Á1=0.1V
°²ÅàÁ¦£º${F}_{°²0}=B{L}_{1}•\frac{{E}_{0}}{R}=0.5¡Á0.2¡Á\frac{0.1}{0.1}=0.1$N
¿ªÊ¼Ê±µÄÀÁ¦£ºF0=ma+F°²0=0.1¡Á2+0.1=0.3N
ÉèÏß¿òÈ«²¿½øÈë´Å³¡µÄʱ¼äΪt0£¬Ôò£º${L}_{2}={v}_{0}{t}_{0}+\frac{1}{2}a{t}_{0}^{2}$
´úÈëÊý¾ÝµÃ£ºt0=0.5s
ÔÚ0.5sÄÚÏß¿òÄÚÓиÐÓ¦µçÁ÷£¬Éè¾¹ýt sʱ¿ÌÏß¿òµÄËÙ¶ÈΪv£¬Ôò£ºv=v0+at
µç¶¯ÊÆ£ºE=BL1v
ÀÁ¦£º$F=ma+B{L}_{1}•\frac{E}{R}$=$ma+\frac{{B}^{2}{L}_{1}^{2}£¨{v}_{0}+at£©}{R}$=0.1¡Á2+£¨0.1+0.2t£©
¿ÉÖª£¬ÀÁ¦FÓëʱ¼ät³ÉÏßÐÔ¹ØÏµ£»µ±t=0.5s¿ªÊ¼£ºF=0.4N
µ±Ê±¼ät£¾t0=0.5sºó£¬½ðÊôÏß¿òÄÚûÓиÐÓ¦µçÁ÷£¬Êܵ½µÄÀÁ¦²»±ä´óСΪ£ºF=ma=0.1¡Á2=0.2N
ËùÒÔ»³öab±ß³ö´Å³¡Ö®Ç°£¬ÍâÁ¦FËæÊ±¼ät±ä»¯µÄͼÏóÈçͼ£®![]()
´ð£º£¨1£©ÈôÏß¿ò½øÈë´Å³¡¹ý³ÌÖÐÍâÁ¦F×ö¹¦ÎªWF=0.27J£¬Ôڴ˹ý³ÌÖÐÏß¿ò²úÉúµÄ½¹¶úÈÈÊÇ0.12J£®
£¨2£©Èçͼ£®
µãÆÀ ±¾Ì⿼²éÁËÇóÏß¿òµÄËÙ¶È¡¢Ïß¿ò²úÉúµÄ½¹¶úÈÈ£¬·ÖÎöÇå³þÏß¿òÔ˶¯¹ý³Ì£¬Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§¹«Ê½¡¢ÄÜÁ¿Êغ㶨Âɼ´¿ÉÕýÈ·½âÌ⣮
| A£® | ·¨ÀµÚͨ¹ýʵÑé×ܽá³öÀã´Î¶¨ÂÉ£¬ÓÃÀ´ÅжϸÐÓ¦µçÁ÷µÄ·½Ïò | |
| B£® | ·¨ÀµÚ·¢ÏÖÁ˵ç´Å¸ÐÓ¦ÏÖÏó£¬Ðû¸æÁ˵ç´Åѧ×÷ΪһÃÅͳһѧ¿ÆµÄµ®Éú | |
| C£® | ŦÂüºÍΤ²®ÏȺóÖ¸³ö±ÕºÏµç·ÖиÐÓ¦µç¶¯ÊƵĴóС£¬¸ú´©¹ýÕâÒ»µç·µÄ´ÅͨÁ¿µÄ±ä»¯ÂʳÉÕý±È£¬¼´·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉ | |
| D£® | °ÂË¹ÌØ·¢ÏÖÁ˵çÁ÷µÄ´ÅЧӦ£¬Ö¤Ã÷Á˵çÓë´ÅÖ®¼ä´æÔÚÏ໥ÁªÏµ |
| A£® | ͬÖÖÎïÖÊÔÚ²»Í¬Ìõ¼þÏÂËùÉú³ÉµÄ¾§ÌåµÄ΢Á£¶¼°´ÏàͬµÄ¹æÔòÅÅÁÐ | |
| B£® | ÈÈÁ¿¿ÉÒÔ´ÓµÍÎÂÎïÌåÏò¸ßÎÂÎïÌå´«µÝ | |
| C£® | Ðü¸¡ÔÚÒºÌåÖеÄ΢Á£Ô½Ð¡£¬ÔÚijһ˲¼äÓëËüÏàײµÄÒºÌå·Ö×ÓÊýÔ½ÉÙ£¬²¼ÀÊÔ˶¯Ô½Ã÷ÏÔ | |
| D£® | ·Ö×Ó¼äÏ໥×÷ÓÃÁ¦Ëæ·Ö×Ó¼ä¾àµÄ¼õС¶øÔö´ó | |
| E£® | µ±Ë®ÃæÉÏ·½µÄË®ÕôÆø´ïµ½±¥ºÍ״̬ʱ£¬Ë®Öл¹»áÓÐË®·Ö×ӷɳöË®Ãæ |
| A£® | aµãµçÊÆ±Èbµã¸ß | |
| B£® | abÁ½µãµÄ³¡Ç¿·½ÏòÏàͬ£¬bµã³¡Ç¿±Èaµã´ó | |
| C£® | a¡¢b¡¢cÈýµãµçÊÆ´Ó¸ßµ½µÍΪc¡¢b¡¢a | |
| D£® | Ò»¸öµç×ÓÔÚaµãÎÞ³õËÙÊÍ·Å£¬ÔòËü½«ÔÚcµãÁ½²àÍù¸´Õñ¶¯ |
| A£® | ½ðÊô°ôabÔ˶¯µÄ¼ÓËÙ¶È´óСʼÖÕΪ$\frac{{v}^{2}}{2x}$ | |
| B£® | ½ðÊô°ôabÊܵ½µÄ×î´ó°²ÅàÁ¦Îª$\frac{{B}^{2}{L}^{2}v}{R}$sin¦È | |
| C£® | ͨ¹ý½ðÊô°ôabºá½ØÃæµÄµçºÉÁ¿Îª$\frac{BLX}{R}$ | |
| D£® | ½ðÊô°ôab²úÉúµÄ½¹¶úÈÈΪ$\frac{{B}^{2}{L}^{2}v}{2R}$x |
| A£® | 0£¼t¡Ü$\frac{L}{2{v}_{0}}$ʱ¼äÄÚ£¬½ðÊô¸ËÖеçÁ÷±£³Ö´óС²»±ä | |
| B£® | t£¾$\frac{L}{2{v}_{0}}$ºó£¬½ðÊô¸ËÖеçÁ÷´óС²»±ä | |
| C£® | t=$\frac{L}{4{v}_{0}}$ʱ£¬ÍâÁ¦´óСÊÇ$\frac{{B}^{2}L{v}_{0}}{£¨1+\sqrt{2}£©{R}_{0}}$ | |
| D£® | t=$\frac{L}{{v}_{0}}$ʱ£¬¸ËÊܵݲÅàÁ¦´óСÊÇ$\frac{{B}^{2}L{v}_{0}}{£¨\sqrt{2}+2£©{R}_{0}}$ |
| A£® | MµãµçÊÆºÍµç³¡Ç¿´óС¾ùΪÁã | |
| B£® | NµãµçÊÆºÍµç³¡Ç¿´óС¾ù²»ÎªÁã | |
| C£® | Ò»ÕýÊÔ̽µçºÉ´ÓPÒÆµ½M¹ý³ÌÖУ¬µç³¡Á¦×ö¹¦|WPN|=|WNM| | |
| D£® | ÓÉͼ¿ÉÖª£¬Q1Ϊ¸ºµçºÉ£¬Q2ΪÕýµçºÉ£¬ÇÒQ1µçºÉÁ¿´óÓÚQ2 |