ÌâÄ¿ÄÚÈÝ
9£®¢ÙÓÃÌìÆ½³Æ³öÎï¿éQµÄÖÊÁ¿m£»
¢Ú²âÁ¿³ö¹ìµÀABµÄ°ë¾¶R¡¢BCµÄ³¤¶ÈLºÍCC?µÄ¸ß¶Èh£»
¢Û½«Îï¿éQÔÚAµã´Ó¾²Ö¹ÊÍ·Å£¬ÔÚÎï¿éQÂ䵨´¦±ê¼ÇÆäÂ䵨µãD£»
¢ÜÖØ¸´²½Öè¢Û£¬¹²×ö10´Î£»
¢Ý½«10¸öÂ䵨µãÓÃÒ»¾¡Á¿Ð¡µÄԲΧס£¬ÓÃÃ׳߲âÁ¿Ô²Ðĵ½C?µÄ¾àÀës£®
£¨1£©ÓÃʵÑéÖвâÁ¿Á¿±íʾ£º
£¨¢ñ£©ÔÚÎï¿éQ´ÓBÔ˶¯µ½CµÄ¹ý³ÌÖУ¬Îï¿éQ¿Ë·þĦ²ÁÁ¦×öµÄ¹¦Wf=mgR-$\frac{mg{s}^{2}}{4h}$£»
£¨¢ò£©Îï¿éQÓëÆ½°åPÖ®¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì=$\frac{R}{L}$-$\frac{{s}^{2}}{4hL}$£®
£¨2£©»Ø´ðÏÂÁÐÎÊÌ⣺
£¨¢ñ£©ÊµÑé²½Öè¢Ü¢ÝµÄÄ¿µÄÊÇͨ¹ý¶à´ÎʵÑé¼õСʵÑé½á¹ûµÄÎó²î£»
£¨¢ò£©ÒÑ֪ʵÑé²âµÃµÄ¦ÌÖµ±Èʵ¼Êֵƫ´ó£¬ÆäÔÒò³ýÁËʵÑéÖвâÁ¿µÄÎó²îÍ⣬ÆäËüÎÊÌâ¿ÉÄÜÊÇQÊÍ·ÅµãÆ«µÍ£»»òÔ²»¡¹ìµÀ´æÔÚĦ²Á£»»òB´¦ÏνӲ»Æ½»¬µÈ£®£¨Ð´³öÒ»¸ö¿ÉÄܵÄÔÒò¼´¿É£©
·ÖÎö £¨1£©Îï¿éÓÉAµ½Bµã¹ý³Ì£¬Óɶ¯Äܶ¨Àí¿ÉÒÔÇó³öÎï¿éµ½´ïBʱµÄ¶¯ÄÜ£»
Îï¿éÀ뿪Cµãºó×öƽÅ×Ô˶¯£¬ÓÉÆ½Å×Ô˶¯µÄ֪ʶ¿ÉÒÔÇó³öÎï¿éÔÚCµãµÄËÙ¶È£¬È»ºóÇó³öÔÚCµãµÄ¶¯ÄÜ£»
ÓÉBµ½C£¬Óɶ¯Äܶ¨Àí¿ÉÒÔÇó³ö¿Ë·þĦ²ÁÁ¦Ëù×öµÄ¹¦£»
Óɹ¦µÄ¼ÆË㹫ʽ¿ÉÒÔÇó³ö¶¯Ä¦²ÁÒòÊý£®
£¨2£©¶à´ÎʵÑéµÄÄ¿µÄÊǼõСʵÑéÎó²î£¬Îó²îÆ«´óµÄÔÒòÊÇ´æÔÚĦ²Á×èÁ¦£®
½â´ð ½â£º£¨1£©£¨¢ñ£©´ÓAµ½B£¬Óɶ¯Äܶ¨ÀíµÃ£ºmgR=EKB-0£¬ÔòÎï¿éµ½´ïBʱµÄ¶¯ÄÜ£ºEKB=mgR£»
À뿪Cºó£¬Îï¿é×öƽÅ×Ô˶¯£¬
ˮƽ·½Ïò£ºs=vCt£¬
ÊúÖ±·½Ïò£ºh=$\frac{1}{2}$gt2£¬
Îï¿éÔÚCµãµÄ¶¯ÄÜ£ºEKC=$\frac{1}{2}$mvC2£¬
½âµÃ£ºEKC=$\frac{mg{s}^{2}}{4h}$£»
ÓÉBµ½C¹ý³ÌÖУ¬Óɶ¯Äܶ¨ÀíµÃ£º
-Wf=$\frac{1}{2}$mvC2-$\frac{1}{2}$mvB2£¬
¿Ë·þĦ²ÁÁ¦×öµÄ¹¦£ºWf=mgR-$\frac{mg{s}^{2}}{4h}$£»
£¨¢ò£©Bµ½C¹ý³ÌÖУ¬¿Ë·þĦ²ÁÁ¦×öµÄ¹¦£º
Wf=¦ÌmgL=mgR-$\frac{mg{s}^{2}}{4h}$£¬
Ôò£º¦Ì=$\frac{R}{L}$-$\frac{{s}^{2}}{4hL}$£»
£¨2£©ÊµÑé²½Öè¢Ü¢ÝµÄÄ¿µÄ£¬ÊÇͨ¹ý¶à´ÎʵÑé¼õСʵÑé½á¹ûµÄÎó²î£»
ʵÑé²âµÃµÄ¦ÌÖµ±Èʵ¼Êֵƫ´ó£¬ÆäÔÒò³ýÁËʵÑéÖвâÁ¿Á¿µÄÎó²îÖ®Í⣬ÆäËûµÄ¿ÉÄÜÊÇÔ²»¡¹ìµÀ´æÔÚĦ²Á£¬½Ó·ìB´¦²»Æ½»¬µÈ£®
¹Ê´ð°¸Îª£º£¨1£©£¨¢ñ£©mgR-$\frac{mg{s}^{2}}{4h}$£¬
£¨¢ò£©$\frac{R}{L}$-$\frac{{s}^{2}}{4hL}$£»
£¨2£©£¨¢ñ£©Í¨¹ý¶à´ÎʵÑé¼õСʵÑé½á¹ûµÄÎó²î£»
£¨¢ò£©QÊÍ·ÅµãÆ«µÍ£»»òÔ²»¡¹ìµÀ´æÔÚĦ²Á£»»òB´¦ÏνӲ»Æ½»¬µÈ£®
µãÆÀ ÊìÁ·Ó¦Óö¯Äܶ¨Àí¡¢Æ½Å×Ô˶¯¹æÂÉ¡¢¹¦µÄ¼ÆË㹫ʽ¼´¿ÉÕýÈ·½âÌ⣬ѧ»á¸ù¾ÝʵÑéÊý¾ÝÀ´ÊµÑé½á¹û·ÖÎö£¬×¢ÒâʵÑéÎó²î²»»áûÓУ¬Ö»ÄܽµµÍ£®
| A£® | ÆøÌåѹǿÔö´ó | |
| B£® | ÆøÌå¶ÔÍâ×ö¹¦ | |
| C£® | ÆøÌå·Ö×ÓµÄÊÆÄÜÔö´ó | |
| D£® | ÆøÌå·Ö×ӵį½¾ù¶¯ÄÜÔö´ó | |
| E£® | ÆøÌåÎüÊÕµÄÈÈÁ¿µÈÓÚÆøÌåÄÚÄܵÄÔöÁ¿ |
| A£® | ÒÔÂÑ»÷ʯ£¬µ°ÆÆ¶øÊ¯Í·Ã»ËðÉË£¬ÊÇÒòΪʯͷ¶Ô¼¦µ°µÄ×÷ÓÃÁ¦´óÓÚ¼¦µ°¶ÔʯͷµÄ×÷ÓÃÁ¦ | |
| B£® | ÎïÌåÖ»ÓÐÏ໥½Ó´¥²Å»á²úÉúÁ¦µÄ×÷Óà | |
| C£® | ËÙ¶È´óµÄÎïÌåºÜÄÑÍ£ÏÂÀ´£¬ÊÇÒòΪËüµÄ¹ßÐÔ´ó | |
| D£® | ×÷ÓÃÁ¦Óë·´×÷ÓÃÁ¦Ò»¶¨×÷ÓÃÔÚ²»Í¬µÄÎïÌåÉÏ£¬ÇÒ¶þÁ¦µÄÐÔÖÊÒ»¶¨ÊÇÏàͬµÄ |
| A£® | ÊÜÁ¦Æ½ºâ | B£® | Êܵ½ÏòǰµÄĦ²ÁÁ¦×÷Óà | ||
| C£® | ËùÊÜÁ¦µÄºÏÁ¦ÑØÐ±ÃæÏòÉÏ | D£® | ËùÊÜÁ¦µÄºÏÁ¦ÑØÐ±ÃæÏòÏ |
| A£® | СÇòµÄ¶¯ÄÜÒ»Ö±¼õÉÙ | B£® | СÇòµÄÖØÁ¦ÈÈÄÜÒ»Ö±Ôö´ó | ||
| C£® | µ¯»ÉµÄµ¯ÐÔÊÆÄÜÒ»Ö±Ôö´ó | D£® | СÇòµÄ»úеÄܲ»±ä |
| A£® | $\sqrt{\frac{g}{R}}$ | B£® | $\sqrt{\frac{R}{g}}$ | C£® | 2$\sqrt{\frac{g}{R}}$ | D£® | $\sqrt{\frac{2R}{g}}$ |
| A£® | m$\frac{{v}^{2}}{R}$ | B£® | mg | C£® | m$\sqrt{{g}^{2}+\frac{{v}^{4}}{{R}^{2}}}$ | D£® | m$\sqrt{{g}^{2}-\frac{{v}^{4}}{{R}^{2}}}$ |