题目内容
| 1 | 4 |
(1)小物块到达B点时速度的大小.
(2)小物块进入水平轨道BC后,受到电场力和支持力的大小各是多少?
(3)小物块进入水平轨道BC滑行,若经t=1.0s停下,则小物块与BC间的动摩擦因数为多少?
分析:(1)A到B的过程中只有重力做功,机械能守恒,根据机械能守恒定律求出小物块到达B点的速度大小.
(2)根据电场强度求出电场力的大小,根据竖直方向上平衡求出支持力的大小.
(3)根据速度时间公式求出匀减速直线运动的加速度,根据牛顿第二定律求出摩擦力的大小,结合f=μN求出动摩擦因数的大小.
(2)根据电场强度求出电场力的大小,根据竖直方向上平衡求出支持力的大小.
(3)根据速度时间公式求出匀减速直线运动的加速度,根据牛顿第二定律求出摩擦力的大小,结合f=μN求出动摩擦因数的大小.
解答:解:(1)小物块从A滑到B的过程,由机械能守恒定律得:mgR=
mvB2
解得:vB=
=
m/s=3m/s
(2)小物块在BC轨道上受到的电场力的大小:
F电=qE=5.0×10-6×4.0×104 N=0.2N
小物块受到支持力的大小:
N=mg+F电=(0.1×l0+0.2)N=1.2N
(3)小物块在BC轨道上运动受力如图所示,做匀减速直线运动的加速度:
a=
=
=-3m/s2
根据牛顿第二定律得:f=ma=0.1×3N=-0.3 N
负号表示摩擦力方向与小物块运动方向相反.
所以,小物块与BC间的动摩擦因数为:
μ=
=
=0.25

答:(1)小物块到达B点时速度的大小为3m/s.
(2)小物块进入水平轨道BC后,受到电场力和支持力的大小分别为0.2N、1.2N.
(3)小物块与BC间的动摩擦因数为0.25.
| 1 |
| 2 |
解得:vB=
| 2gR |
| 2×10×0.45 |
(2)小物块在BC轨道上受到的电场力的大小:
F电=qE=5.0×10-6×4.0×104 N=0.2N
小物块受到支持力的大小:
N=mg+F电=(0.1×l0+0.2)N=1.2N
(3)小物块在BC轨道上运动受力如图所示,做匀减速直线运动的加速度:
a=
| 0-vB |
| t |
| -3 |
| 1 |
根据牛顿第二定律得:f=ma=0.1×3N=-0.3 N
负号表示摩擦力方向与小物块运动方向相反.
所以,小物块与BC间的动摩擦因数为:
μ=
| f |
| N |
| 0.3 |
| 1.2 |
答:(1)小物块到达B点时速度的大小为3m/s.
(2)小物块进入水平轨道BC后,受到电场力和支持力的大小分别为0.2N、1.2N.
(3)小物块与BC间的动摩擦因数为0.25.
点评:本题考查了机械能守恒定律,牛顿第二定律和运动学公式,难度不大,关键理清物体在整个过程中的运动规律,正确地进行受力分析.
练习册系列答案
相关题目
| A、BC面将有色光射出 | B、光屏M上会出现色彩光带且紫光在上 | C、光屏M上会出现色彩光带且红光在上 | D、将光屏保持与BC垂直向右平移,屏上彩色光带宽度不变 |