题目内容

4.如图所示为一列沿x轴正方向传播的简谐横波在t=0时刻的波形图,已知该波的传播速度为6.4m/s,求:
(i)这列波的周期;
(ii)平衡位置在x=4cm处的质点在0~0.05s时间内运动的路程.

分析 (i)根据波形图读出波长,再由v=$\frac{λ}{T}$求出周期;
(ii)根据质点的周期,由0.05s 算出完成多少个全振动,从而由振幅来确定x=4cm处质点在这段时间内运动的路程.

解答 解:(i)由题图可知波长 λ=12 cm=0.12m
则周期 T=$\frac{λ}{v}$=$\frac{0.12}{6.4}$=$\frac{3}{160}$ s
(ii)质点从平衡位置出发一个周期运动4A,半个周期运动2A,平衡位置在x=4 cm处的质点从平衡位置开始运动
△t=0.05 s=2$\frac{2}{3}$T=2T+$\frac{1}{2}$T+$\frac{1}{6}$T
由题图知,x=4 cm处的质点的振动方程为y=Asinωt=Asin$\frac{2π}{T}$t
故在最后$\frac{1}{6}$T时间内质点运动的路程是Asin ($\frac{2π}{T}$•$\frac{1}{6}$T)=$\frac{\sqrt{3}}{2}$A
所以总的路程是2.5×4A+$\frac{\sqrt{3}}{2}$A=(10×4+$\frac{\sqrt{3}}{2}$×4)cm=$\frac{20+\sqrt{3}}{50}$ m.
答:
(i)这列波的周期是$\frac{3}{160}$ s;
(ii)平衡位置在x=4cm处的质点在0~0.05s时间内运动的路程是$\frac{20+\sqrt{3}}{50}$ m.

点评 本题的关键要学会如何列出质点的振动方程,从而求出任意时刻质点的位移,同时要注意质点的路程与位移要严格区别,不能混淆.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网