ÌâÄ¿ÄÚÈÝ
ÖÊÁ¿·Ö±ðΪm1ºÍm2µÄÁ½¸öСÎï¿éÓÃÇáÉþÁ¬½Ó£¬m1=4m0£¬m2=5m0£®Éþ¿ç¹ýλÓÚÇã½Ç¦Á=37¡ãµÄ¹â»¬Ð±Ãæ¶¥¶ËµÄÇỬÂÖ£¬»¬ÂÖÓëתÖá¼äµÄĦ²Á²»¼Æ£¬Ð±Ãæ¹Ì¶¨ÔÚˮƽ×ÀÃæÉÏ£¬ÈçͼËùʾ£®m1Ðü¿Õ£¬m2·ÅÔÚÐ±ÃæÉÏ£¬m2×ÔÐ±Ãæµ×¶ËÓɾ²Ö¹¿ªÊ¼Ô˶¯ÖÁÐ±Ãæ¶¥¶Ë£¬ÓÃʱΪt£®ÒÑÖªÖØÁ¦¼ÓËÙ¶ÈΪg£¬sin37¡ã=0.6£¬cos37¡ã=0.8£®Çó£º
£¨1£©½«m1ºÍm2λÖû¥»»£¬Ê¹m2Ðü¿Õ£¬m1·ÅÔÚÐ±ÃæÉÏ£¬m1×ÔÐ±Ãæµ×¶ËÓɾ²Ö¹¿ªÊ¼Ô˶¯ÖÁÐ±Ãæ¶¥¶Ë£¬Á½´ÎÉþÖÐÀÁ¦Ö®±È£»
£¨2£©½«m1Ðü¿Õ£¬m2·ÅÔÚÐ±ÃæÉÏ£¬Ôö¼Óm2µÄÖÊÁ¿£¬Ê¹m2´ÓÐ±Ãæ¶¥¶ËÓɾ²Ö¹¿ªÊ¼Ô˶¯ÖÁÐ±Ãæµ×¶ËµÄʱ¼äҲΪt£¬m2Ôö¼ÓµÄÖÊÁ¿£®
£¨1£©½«m1ºÍm2λÖû¥»»£¬Ê¹m2Ðü¿Õ£¬m1·ÅÔÚÐ±ÃæÉÏ£¬m1×ÔÐ±Ãæµ×¶ËÓɾ²Ö¹¿ªÊ¼Ô˶¯ÖÁÐ±Ãæ¶¥¶Ë£¬Á½´ÎÉþÖÐÀÁ¦Ö®±È£»
£¨2£©½«m1Ðü¿Õ£¬m2·ÅÔÚÐ±ÃæÉÏ£¬Ôö¼Óm2µÄÖÊÁ¿£¬Ê¹m2´ÓÐ±Ãæ¶¥¶ËÓɾ²Ö¹¿ªÊ¼Ô˶¯ÖÁÐ±Ãæµ×¶ËµÄʱ¼äҲΪt£¬m2Ôö¼ÓµÄÖÊÁ¿£®
£¨1£©µÚÒ»´Î£º¶ÔÓÚm1£ºm1g-T1=m1a1£¬
¶ÔÓÚm2£ºT1-m2g?sin¦Á=m2a1
ËùÒÔ£¬
=
?T1=
µÚ¶þ´Î£º¶ÔÓÚm2£ºm2g-T2=m2a2£¬
¶ÔÓÚm1£ºT2-m1g?sin¦Á=m1a2£¬
ËùÒÔ£¬
=
?T2=
£¬
ËùÒÔ£º
=1£»
£¨2£©µÚÒ»´Î£º¶ÔÓÚm1£ºm1g-T1=m1a1
¶ÔÓÚm2£ºT1-m2g?sin¦Á=m2a1£¬
ËùÒÔ£¬a1=
£¬
Ôö¼Óm2µÄÖÊÁ¿ºó£¬¶ÔÓÚm2£ºm2¡äg?sin¦Á-T3=m2¡äa3£¬
¶ÔÓÚm1£ºT3-m1g=m1a3£¬
ËùÒÔ£¬a3=
¸ù¾Ý£ºS=
at2£¬¿ÉµÃ£º
a1=a3?
=
?m2¡ä=
mo£¬
¡÷m=m2¡ä-m2=
mo£®
´ð£º£¨1£©Á½´ÎÉþÖÐÀÁ¦Ö®±È1£º1£¨2£©m2Ôö¼ÓµÄÖÊÁ¿Îª
m0
¶ÔÓÚm2£ºT1-m2g?sin¦Á=m2a1
ËùÒÔ£¬
| m1g-T1 |
| T1-m2g?sin¦Á |
| m1 |
| m2 |
| m1m2g+m1m2g?sin¦Á |
| m1+m2 |
µÚ¶þ´Î£º¶ÔÓÚm2£ºm2g-T2=m2a2£¬
¶ÔÓÚm1£ºT2-m1g?sin¦Á=m1a2£¬
ËùÒÔ£¬
| m2g-T2 |
| T2-m1g?sin¦Á |
| m2 |
| m1 |
| m1m2g+m1m2g?sin¦Á |
| m1+m2 |
ËùÒÔ£º
| T1 |
| T2 |
£¨2£©µÚÒ»´Î£º¶ÔÓÚm1£ºm1g-T1=m1a1
¶ÔÓÚm2£ºT1-m2g?sin¦Á=m2a1£¬
ËùÒÔ£¬a1=
| m1g-m2g?sin¦Á |
| m1+m2 |
Ôö¼Óm2µÄÖÊÁ¿ºó£¬¶ÔÓÚm2£ºm2¡äg?sin¦Á-T3=m2¡äa3£¬
¶ÔÓÚm1£ºT3-m1g=m1a3£¬
ËùÒÔ£¬a3=
| m2¡äg?sin¦Á-m1g |
| m1+m2¡ä |
¸ù¾Ý£ºS=
| 1 |
| 2 |
a1=a3?
| m1g-m2g?sin¦Á |
| m1+m2 |
| m2¡äg?sin¦Á-m1g |
| m2¡ä+m1 |
| 100 |
| 11 |
¡÷m=m2¡ä-m2=
| 45 |
| 11 |
´ð£º£¨1£©Á½´ÎÉþÖÐÀÁ¦Ö®±È1£º1£¨2£©m2Ôö¼ÓµÄÖÊÁ¿Îª
| 45 |
| 11 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Á½¿ÅÐÐÐǵÄÖÊÁ¿·Ö±ðΪm1ºÍm2£¬ÈÆÌ«ÑôÔËÐеĹìµÀ°ë³¤Öá·Ö±ðΪr1ºÍr2£¬ÔòËüÃǵĹ«×ªÖÜÆÚÖ®±ÈΪ£¨¡¡¡¡£©
A¡¢
| ||||||||
B¡¢
| ||||||||
C¡¢
| ||||||||
| D¡¢ÎÞ·¨È·¶¨ |