(12分)在数列中,=0,且对任意k,成等差数列,其公差为2k。(Ⅰ)证明成等比数列;(Ⅱ)求数列的通项公式;
已知数列,.(1)求证:数列为等比数列;(2)数列中,是否存在连续的三项,这三项构成等比数列?试说明理由;(3)设,其中为常数,且,,求.
(本小题满分10分)设等比数列的前项和为.已知,求和.
(本小题满分12分)已知各项均为正数的数列中,是数列的前项和,对任意,有 .函数,数列的首项. (Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式; (Ⅲ)令,,求数列的前n项和.
(本题满分12分)设为非零实数,(Ⅰ)写出并判断是否为等比数列.若是,给出证明;若不是,说明理由;(Ⅱ)设,求数列的前n项和.
(本小题共13分)设数列的前项和.(Ⅰ)证明数列是等比数列;(Ⅱ)若,且,求数列的前项和
等比数列的前项和为,已知成等差数列.(1)求数列的公比;(2)若,问是数列的前多少项和.
设各项为正的数列,其前项和为,并且对所有正整数,与2的等差中项等于与2的等比中项.(1)写出数列的前二项; [来源:Z.xx.k.Com](2)求数列的通项公式(写出推证过程);(3)令,求的前项和.
已知等比数列的公比, 是和的一个等比中项,和的等差中项为,若数列满足().(Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和.
数列{}是公比为的等比数列,,(1)求公比;(2)令,求{}的前项和.