一台机器使用的时候较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
| 转速χ(转/秒) | 16 | 14 | 12 | 8 |
| 每小时生产有缺点的零件数y(件) | 11 | 9 | 8 | 5 |
(1)画出散点图,并通过散点图确定变量y对χ是否线性相关;
(2)如果y对χ有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,
那么机器的运转速度应控制在什么范围内?(精确到0.0001)
参考公式:线性回归方程的系数公式:
![]()
已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,
则
”若把该结论推广到空间,则有结论:“在棱长都相等的四面体
中,若
的中心为
,四面体内部一点
到四面体各面的距离都相等,则
= ;