已知正方体,是底对角线的交点.
求证:(1)∥面;
(2 )面.
如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1).
(Ⅰ)求证:对任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求的值。
(2009湖南卷文)(本小题满分12分)
如图3,在正三棱柱中,AB=4, ,点D是BC的中点,点E在AC上,且DEE.
(Ⅰ)证明:平面平面;
(Ⅱ)求直线AD和平面所成角的正弦值。
(2009辽宁卷文)(本小题满分12分)
如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。
(I)若CD=2,平面ABCD ⊥平面DCEF,求直线MN的长;
(II)用反证法证明:直线ME 与 BN 是两条异面直线。
(2009全国卷Ⅰ文)(本小题满分12分)(注决:在试题卷上作答无效)
如图,四棱锥中,底面为矩形,底面,,,点在侧棱上,。
(I)证明:是侧棱的中点;
求二面角的大小。(同理18)
(2009四川卷文)(本小题满分12分)
(I)求证:;
(II)设线段、的中点分别为、,
求证: ∥
(III)求二面角的大小。
(2009陕西卷文)(本小题满分12分)
如图,直三棱柱中, AB=1,,∠ABC=60.
(Ⅰ)证明:;
(Ⅱ)求二面角A——B的大小。
(2009宁夏海南卷文)(本小题满分12分)
如图,在三棱锥中,⊿是等边三角形,∠PAC=∠PBC=90 º
(Ⅰ)证明:AB⊥PC
(Ⅱ)若,且平面⊥平面,
求三棱锥体积。
(2009湖南卷理)(本小题满分12分)
如图4,在正三棱柱中,
D是的中点,点E在上,且。
证明平面平面
求直线和平面所成角的正弦值。
(2009安徽卷文)(本小题满分13分)
如图,ABCD的边长为2的正方形,直线l与平面ABCD平行,g和F式l上的两个不同点,且EA=ED,FB=FC, 和是平面ABCD内的两点,和都与平面ABCD垂直,
(Ⅰ)证明:直线垂直且平分线段AD:.
(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面
体ABCDEF的体积。