设函数和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( )
A.+|g(x)|是偶函数 B.-|g(x)|是奇函数
C.|| +g(x)是偶函数 D.||- g(x)是奇函数
【解析】D.当时,显然;当时, ,所以选D.
若向量a,b,c满足a∥b且a⊥c,则c·(a+2b)=( )
A.4 B.3 C.2 D.0
已知集合A={ (x,y)|x,y为实数,且x2+y2=l},B={(x,y) |x,y为实数,且y=x}, 则A ∩ B的元素个数为( )
A、0 B、1 C、2 D、3
【解析】B.由题得所以选B.
设复数z满足(1+i)z=2,其中i为虚数单位,则Z=( )
A.1+i B.1-i C.2+2i D.2-2i
设函数
(I)若的极值点,求实数;
(II)求实数的取值范围,使得对任意的,恒有成立,注:为自然对数的底数。
已知抛物线:=,圆:的圆心为点M
(Ⅰ)求点M到抛物线的准线的距离;
(Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程
如图,在三棱锥中,,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(Ⅰ)证明:AP⊥BC;
(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-B为直二面角?若存在,求出AM的长;若不存在,请说明理由。