(07年重庆卷理)已知定义域为R的函数f(x)在上为减函数,且函数y=f(x+8)函数为偶函数,则( )
A.f(6)>f(7) B.f(6)>f(9) C.f(7)>f(9) D.f(7)>f(10)
(07年重庆卷理)设正数a,b满足, 则( )
A.0 B. C. D.1
(07年重庆卷理)若a是1+2b与1-2b的等比中项,则的最大值为( )
A. B. C. D.
(08年扬州中学) 已知P是椭圆C:上异于长轴端点的任意一点,A为长轴的左端点,F为椭圆的右焦点,椭圆的右准线与x轴、直线AP分别交于点K、M,.
(Ⅰ)若椭圆的焦距为6,求椭圆C的方程;
(Ⅱ)若,求证:.
(08年广东卷)(本小题满分14分)设,椭圆方程为,抛物线方程为.如图6所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
(08年安徽皖南八校联考文) 将直线:按向量平移后得:,则实数的值为
A.-1 B.1 C.-2 D.2
(07年重庆卷)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( )
A. B. C. D.
(2009山东卷理)(本小题满分14分)
设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。