【题目】已知抛物线:的焦点为,为抛物线上一点,为坐标原点,的外接圆与抛物线的准线相切,且外接圆的周长为.
(1)求抛物线的方程;
(2)已知点,设不垂直于轴的直线与抛物线交于不同的两点,,若,证明直线过定点并写出定点坐标.
【题目】在平面直角坐标系中,①已知点,,为曲线上任一点,到点的距离和到点的距离的比值为2;②圆经过,,且圆心在直线上.从①②中任选一个条件.
(1)求曲线的方程;
(2)若直线被曲线截得弦长为2,求的值.
【题目】受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:
品牌
甲
乙
首次出现故
障时间x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
轿车数量(辆)
2
3
45
5
每辆利润
(万元)
1
1.8
2.9
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率.
(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列.
(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.
【题目】设函数,
(1)求函数在上的值域
(2)设,若方程有两个不相等的实数根,求实数的取值范围.
【题目】如图是函数(,,,)在区间上的图象,为了得到这个函数的图象,只需将()的图象上的所有的点( )
A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变
B. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变
D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
【题目】以下四个命题中正确的是( )
A.空间的任何一个向量都可用其他三个向量表示
B.若为空间向量的一组基底,则构成空间向量的另一组基底
C.为直角三角形的充要条件是
D.任何三个不共线的向量都可构成空间向量的一个基底
【题目】已知椭圆C:的两个焦点分别为,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆C的方程;
(2)过点M(1,0)的直线与椭圆C相交于A、B两点,设点N(3,2),记直线AN、BN的斜率分别为k1、k2,求证:k1+k2为定值.
【题目】某部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按,,,分组,制成频率分布直方图:
(1)求的值;
(2)记表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”,试估计的概率;
(3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为,,求的值,并直接写出与的大小关系.
【题目】已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.
(Ⅰ)求椭圆的离心率及左焦点的坐标;
(Ⅱ)求证:直线与椭圆相切;
(Ⅲ)判断是否为定值,并说明理由.
【题目】已知函数.
(Ⅰ)当时,求函数的极小值;
(Ⅱ)当时,讨论的单调性;
(Ⅲ)若函数在区间上有且只有一个零点,求的取值范围.