【题目】我市南澳县是广东唯一的海岛县,海区面积广阔,发展太平洋牡蛎养殖业具有得天独厚的优势,所产的“南澳牡蛎”是中国国家地理标志产品,产量高、肉质肥、营养好,素有“海洋牛奶精品”的美誉.根据养殖规模与以往的养殖经验,产自某南澳牡蛎养殖基地的单个“南澳牡蛎”质量(克)在正常环境下服从正态分布
.
(1)购买10只该基地的“南澳牡蛎”,会买到质量小于20g的牡蛎的可能性有多大?
(2)2019年该基地考虑增加人工投入,现有以往的人工投入增量x(人)与年收益增量y(万元)的数据如下:
人工投入增量x(人) | 2 | 3 | 4 | 6 | 8 | 10 | 13 |
年收益增量y(万元) | 13 | 22 | 31 | 42 | 50 | 56 | 58 |
该基地为了预测人工投入增量为16人时的年收益增量,建立了y与x的两个回归模型:
模型①:由最小二乘公式可求得y与x的线性回归方程:
;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线:
的附近,对人工投入增量x做变换,令
,则
,且有
.
![]()
(i)根据所给的统计量,求模型②中y关于x的回归方程(精确到0.1);
(ii)根据下列表格中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测人工投入增量为16人时的年收益增量.
回归模型 | 模型① | 模型② |
回归方程 |
|
|
| 182.4 | 79.2 |
附:若随机变量
,则
,
;
样本
的最小二乘估计公式为:
,
另,刻画回归效果的相关指数![]()