【题目】BMI指数(身体质量指数,英文为Body Mass Index,简称BMI)是衡量人体胖瘦程度的一个标准,BMI=体重(kg)/身高(m)的平方. 根据中国肥胖问题工作组标准,当BMI
时为肥胖. 某地区随机调查了1200名35岁以上成人的身体健康状况,其中有200名高血压患者,得到被调查者的频率分布直方图如图:
![]()
(1)求被调查者中肥胖人群的BMI 平均值
;
(2)根据频率分布直方图,完成下面的
列联表,并判断能有多大(百分数)的把握认为 35 岁以上成人高血压与肥胖有关?
肥胖 | 不肥胖 | 总计 | |
高血压 | |||
非高血压 | |||
总计 |
参考公式:
,其中
.
参考数据:
| 0.25 | 0.10 | 0.050 | 0.010 | 0.001 |
| 1.323 | 2.706 | 3.841 | 6.635 | 10.828 |
【题目】某网红直播平台为确定下一季度的广告投入计划,收集了近6个月广告投入量
(单位:万元)和收益
(单位:万元)的数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
广告投入量/万元 | 2 | 4 | 6 | 8 | 10 | 12 |
收益/万元 | 14.21 | 20.31 | 31.8 | 31.18 | 37.83 | 44.67 |
用两种模型①
,②
分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
|
|
|
|
7 | 30 | 1464.24 | 364 |
![]()
(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由.
(2)残差绝对值大于2的数据被认为是异常数据,需要剔除:
(i)剔除的异常数据是哪一组?
(ii)剔除异常数据后,求出(1)中所选模型的回归方程;
(iii)广告投入量
时,(ii)中所得模型收益的预报值是多少?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.