【题目】一种室内植物的株高
(单位:
)与与一定范围内的温度
(单位:
)有,现收集了该种植物的
组观测数据,得到如图所示的散点图:
![]()
现根据散点图利用
或
建立
关于
的回归方程,令
,
,得到如下数据:
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
且
与
的相关系数分别为
、
,其中
.
(1)用相关系数说明哪种模型建立
关于
的回归方程更合适;
(2)(i)根据(1)的结果及表中数据,求
关于
的回归方程;
(ii)已知这种植物的利润
(单位:千元)与
、
的关系为
,当
何值时,利润的预报值最大.
附:对于样本
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
,
相关系数
,
.
【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为
)
组别 | 步数分组 | 频数 |
|
| 2 |
|
| 10 |
|
|
|
|
| 2 |
|
|
|
(Ⅰ)写出
的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记
组步数数据的平均数与方差分别为
,
,
组步数数据的平均数与方差分别为
,
,试分别比较
与以
,
与
的大小;(只需写出结论)
(Ⅲ)从上述
两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为
,求
的分布列和数学期望.