【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
x∶y | 1∶1 | 2∶1 | 3∶4 | 4∶5 |
【题目】某高校对生源基地学校一年级的数学成绩进行摸底调查,已知其中两个摸底学校分别有人、人,现采用分层抽样的方法从两个学校一共抽取了名学生的数学成绩,并作出了频数分别统计表如下:(一年级人数为人的学校记为学校一,一年级人数为1000人的学校记为学校二)
学校一
分组 | ||||
频道 | ||||
分组 | ||||
频数 |
学校二
分组 | ||||
频道 | ||||
分组 | ||||
频数 |
(1)计算,的值.
(2)若规定考试成绩在内为优秀,请分别估计两个学校数学成绩的优秀率;
(3)由以上统计数据填写下面列联表,并判断是否有的把握认为两个学校的数学成绩有差异.
学校一 | 学校二 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
附:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:,