【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了
月
日至
月
日的每天昼夜温差与实验室每天每
颗种子中的发芽数,得到如下资料:
日期 |
|
|
|
|
|
温差 |
|
|
|
|
|
发芽数 |
|
|
|
|
|
该农科所确定的研究方案是:先从这五组数据中选取
组,用剩下的
组数据求线性回归方程,再对被选取的
组数据进行检验.
(1)求选取的
组数据恰好是不相邻
天数据的概率;
(2)若选取的是
月
日与
月
日的两组数据,请根据
月
日至
月
日的数据,求出
关于
的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过
颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
【题目】为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了
人进行分析,得到如下列联表(单位:人).
经常使用 | 偶尔使用或不使用 | 合计 | |
|
|
|
|
|
|
|
|
合计 |
|
|
|
(1)根据以上数据,能否在犯错误的概率不超过
的前提下认为
市使用共享单车的情况与年龄有关;
(2)(i)现从所选取的
岁以上的网友中,采用分层抽样的方法选取
人,再从这
人中随机选出
人赠送优惠券,求选出的
人中至少有
人经常使用共享单车的概率;
(ii)将频率视为概率,从
市所有参与调查的网友中随机选取
人赠送礼品,记其中经常使用共享单车的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
【题目】在直角坐标系
中,曲线C的参数方程为
(
为参数),以坐标原点为极点,
轴非负半轴为极轴建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)设点M的极坐标为
,过点M的直线
与曲线C交于A、B两点,若
,求
.