【题目】在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:
分数段 | 0~39 | 40~49 | 50~59 | 60~69 | 70~79 | 80~89 | 90~100 |
午休考生人数 | 29 | 34 | 37 | 29 | 23 | 18 | 10 |
不午休考生人数 | 20 | 52 | 68 | 30 | 15 | 12 | 3 |
(1)根据上述表格完成下列列联表:
及格人数 | 不及格人数 | 合计 | |
午休 | |||
不午休 | |||
合计 |
(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?
| 0.10 | 0.05 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
(参考公式:
,其中
)
【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级
名学生中进行了抽样调查,发现喜欢甜品的占
.这
名学生中南方学生共
人。南方学生中有
人不喜欢甜品.
(1)完成下列
列联表:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | |||
北方学生 | |||
合计 |
(2)根据表中数据,问是否有
的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(3)已知在被调查的南方学生中有
名数学系的学生,其中
名不喜欢甜品;有
名物理系的学生,其中
名不喜欢甜品.现从这两个系的学生中,各随机抽取
人,记抽出的
人中不喜欢甜品的人数为
,求
的分布列和数学期望.
附:
.
| 0.15 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【题目】在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:
![]()
(1)根据上述表格完成下列列联表:
![]()
(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?
(参考公式:
,其中
.)
| 0.010 | 0.05 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |