题目内容
【题目】已知函数
,
.
(1)讨论
的单调性;
(2)若
有两个极值点
,
,且
,证明:
.
【答案】(1)见解析.(2)见解析.
【解析】分析:(1)先求导数,再根据二次方程
=0根得情况分类讨论:当
时,
.∴
在
上单调递减. 当
时,根据两根大小再分类讨论对应单调区间, (2)先化简不等式
消m得
,再利用导数研究
,
单调性,得其最小值大于-1,即证得结果.
详解:(1)由
,得
,
.
设
,
.
当
时,即
时,
,
.
∴
在
上单调递减.
当
时,即
时,
令
,得
,
,
.
当
时,
,
在
上,
,在
上,
,
∴
在
上单调递增,在
上单调递减.
综上,当
时,
在
上单调递减,
当
时,
在
,
上单调递减,在
上单调递增,
当
时,
在
上单调递增,在
上单调递减.
(2)∵
有两个极值点
,
,且
,
∴由(1)知
有两个不同的零点
,
,
,
,且
,此时,
,
要证明
,只要证明
.
∵
,∴只要证明
成立.
∵
,∴
.
设
,
,
则
,
当
时,
,
∴
在
上单调递增,
∴
,即
,
∴
有两个极值点
,
,且
时,
.
练习册系列答案
相关题目
【题目】在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:
![]()
(1)根据上述表格完成下列列联表:
![]()
(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?
(参考公式:
,其中
.)
| 0.010 | 0.05 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |