9.函数f(x)=$\frac{{2}^{x}}{lg(x-1)}$的定义域为( )
| A. | [1,+∞) | B. | (1,+∞) | C. | [1,2)∪(2,+∞) | D. | (1,2)U(2,+∞) |
8.函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x≤-1}\\{{x}^{2}-2x,x>-1}\end{array}\right.$的值域为( )
| A. | [-1,+∞) | B. | [-1,0)∪(3,+∞) | C. | (-∞,-1]∪(1,+∞) | D. | (-∞,+∞) |
6.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{|l{g}{(x-1)}|,x>1}\end{array}\right.$,若关于x的方程f2(x)+bf(x)=0有4个不同的实根,则实数b的取值范围为( )
| A. | (2,+∞) | B. | (0,2] | C. | [-2,0) | D. | (-∞,-2) |
2.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x-5},x>6}\\{(4-\frac{a}{2})x+4,x≤6}\end{array}\right.$是R上的增函数,则实数a的取值范围是( )
0 250861 250869 250875 250879 250885 250887 250891 250897 250899 250905 250911 250915 250917 250921 250927 250929 250935 250939 250941 250945 250947 250951 250953 250955 250956 250957 250959 250960 250961 250963 250965 250969 250971 250975 250977 250981 250987 250989 250995 250999 251001 251005 251011 251017 251019 251025 251029 251031 251037 251041 251047 251055 266669
| A. | (0,1) | B. | (7,8) | C. | [7,8) | D. | (4,8) |