某中学为研究学生的身体素质与课外体育锻炼时间的关系,从该校抽取200名学生对其课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼 的时间(分钟) |
|
|
|
|
|
|
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均课外课外体育运动时间在
上的学生评价为“课外体育达标”.
(Ⅰ)请根据上述表格中的统计数据填写下面
列联表,并通过计算判断是否能在犯错误的概率不超过
的前提下认为 “课外体育达标”与性别有关?
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率.现在从该校全体学生(人数很多)中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为
,求
的数学期望和方差.
参考公式:
,其中
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
已知某校5个学生的数学和物理成绩如下表
学生的编号 | 1 | 2 | 3 | 4 | 5 |
数学 | 80 | 75 | 70 | 65 | 60 |
物理 | 70 | 66 | 68 | 64 | 62 |
(Ⅰ)假设在对这
名学生成绩进行统计时,把这
名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有
名学生的物理成绩是自己的实际分数的概率是多少?
(Ⅱ)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用
表示数学成绩,用
表示物理成绩,求
与
的回归方程;
参考公式:
,
.
某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元。
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,
)的函数解析式
;
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得下表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
频数 | 1 | 2 | 3 | 3 | 1 |
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望。