(2015秋•信阳月考)已知函数是[1,∞]上的增函数.当实数m取最大值时,若存在点Q,使得过Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,则点Q的坐标为( )
A.(0,﹣3) B.(0,3)
C.(0,﹣2) D.(0,2)
(2015•忻州校级四模)已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn,则Sn=( )
A. B.
C. D.
(2014•昆山市校级模拟)已知函数f(x)=﹣xlnx+ax在(0,e)上是增函数,函数.当x∈[0,ln3]时,函数g(x)的最大值M与最小值m的差为,则a= .
(2012•福州模拟)如图,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=2,AC=6,点D在线段BB1上,且BD=,A1C∩AC1=E.
(Ⅰ)求证:直线DE与平面ABC不平行;
(Ⅱ)设平面ADC1与平面ABC所成的锐二面角为θ,若cosθ=,求AA1的长;
(Ⅲ)在(Ⅱ)的条件下,设平面ADC1∩平面ABC=l,求直线l与DE所成的角的余弦值.
(2015•濮阳一模)已知在直角坐标系xOy中,直线l的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρcosθ+3=0.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.
(2013春•徐州期末)某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一抽取的学生人数为 名.
(2015•潍坊模拟)已知双曲线的渐近线方程为,则它的离心率为 .
(2015•福建)若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是 .
(2015秋•如皋市月考)在△ABC中,角A,B,C的对边分别为a,b,c,向量=(cosC,sin),向量=(sin,cosC),且.
(1)求角C的大小;
(2)若a2=2b2+c2,求tanA的值.
(2015秋•如皋市月考)已知非零数列{an}满足a1=1,anan+1=an﹣2an+1(n∈N*).
(1)求证:数列是等比数列;
(2)若关于n的不等式<m﹣3有解,求整数m的最小值;
(3)在数列中,是否存在首项、第r项、第s项(1<r<s≤6),使得这三项依次构成等差数列?若存在,求出所有的r、s;若不存在,请说明理由.