(本题满分12分)在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.(1)求抛物线C的标准方程;(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.
(14分)如图,已知抛物线C1: y=x2, 与圆C2: x2+(y+1)2="1," 过y轴上一点A(0, a)(a>0)作圆C2的切线AD,切点为D(x0, y0).(1)证明:(a+1)(y0+1)=1(2)若切线AD交抛物线C1于E,且E为AD的中点,求点A纵坐标a.
(13分) 如图,已知椭圆的两个焦点分别为,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B与y轴交点为C,又B为线段CF1的中点,若,求椭圆离心率e的取值范围。
(12分) 已知在抛物线上,的重心与此抛物线的焦点F重合。⑴ 写出该抛物线的标准方程和焦点F的坐标;⑵ 求线段BC的中点M的坐标;⑶ 求BC所在直线的方程。
(本小题14分)抛物线与直线相交于两点,且(1)求的值。(2)在抛物线上是否存在点,使得的重心恰为抛物线的焦点,若存在,求点的坐标,若不存在,请说明理由。
在平面直角坐标系中,抛物线C的顶点在原点,焦点F的坐标为(1,0)。(1)求抛物线C的标准方程;(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点。
(本小题满分15分)给定椭圆C:,称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为,其短轴的一个端点到点的距离为.(1)求椭圆C和其“准圆”的方程;(2)若点是椭圆C的“准圆”与轴正半轴的交点,是椭圆C上的两相异点,且轴,求的取值范围;(3)在椭圆C的“准圆”上任取一点,过点作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
(本小题满分14分)已知椭圆中心在原点,焦点在x轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为(Ⅰ)求椭圆的标准方程;(Ⅱ)已知直线与椭圆相交于两点,且坐标原点到直线的距离为,的大小是否为定值?若是求出该定值,不是说明理由.
(本小题满分12分)抛物线的焦点与双曲线的右焦点重合.(Ⅰ)求抛物线的方程;(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.
如图,,是抛物线(为正常数)上的两个动点,直线AB与x轴交于点P,与y轴交于点Q,且(Ⅰ)求证:直线AB过抛物线C的焦点;(Ⅱ)是否存在直线AB,使得若存在,求出直线AB的方程;若不存在,请说明理由。