已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.(1)当时,求函数的单调区间;(2)当时, 若,使得, 求实数的取值范围.
已知函数(I)当a=1时,求函数f(x)的最小值;(II)当a≤0时,讨论函数f(x)的单调性;(III)是否存在实数a,对任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范围;若不存在,说明理由.
已知函数(为自然对数的底数),(为常数),是实数集上的奇函数.(1)求证:;(2)讨论关于的方程:的根的个数;(3)设,证明:(为自然对数的底数).
已知函数(I)求的单调区间;(II)若存在使求实数a的范围.
设函数,.(1)当时,函数取得极值,求的值;(2)当时,求函数在区间[1,2]上的最大值;(3)当时,关于的方程有唯一实数解,求实数的值.
某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为元,则销售量(单位:件)与零售价(单位:元)有如下关系:,问该商品零售价定为多少元时毛利润最大,并求出最大毛利润.(毛利润销售收入进货支出)
已知函数.(I)当时,求的单调区间(Ⅱ)若不等式有解,求实数m的取值菹围;(Ⅲ)定义:对于函数和在其公共定义域内的任意实数,称的值为两函数在处的差值。证明:当时,函数和在其公共定义域内的所有差值都大干2。
已知函数(Ⅰ)当时,求函数的极大值和极小值;(Ⅱ)当时,恒成立,求的取值范围.
已知函数. (Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)设函数,求函数的单调区间;(Ⅲ)若在上存在一点,使得<成立,求的取值范围.
已知函数 (为实常数) .(1)当时,求函数在上的最大值及相应的值;(2)当时,讨论方程根的个数.(3)若,且对任意的,都有,求实数a的取值范围.