(本小题满分12分)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶. 假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行时间应为多少小时?(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(本小题满分12分)如图所示,某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区(阴影部分)和环公园人行道组成.已知休闲区的面积为4000 m 2,人行道的宽分别为4 m和10 m.( I )设休闲区的长m ,求公园ABCD所占面积关于 x 的函数的解析式;(Ⅱ)要使公园ABCD所占总面积最小,休闲区的长和宽该如何设计?
(本小题12分)运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2a元,而汽车每小时耗油升,司机的工资是每小时14a元.(1)求这次行车总费用关于的表达式;(2)当为何值时,这次行车的总费用最低,并求出最低费用的值(a为常数) .
(本小题满分12分)设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为.求:(Ⅰ)求实数的取值范围;(Ⅱ)求圆的方程;(Ⅲ)问圆是否经过某定点(其坐标与b 无关)?请证明你的结论.
(本小题12分)某市居民生活用水收费标准如下:
设函数,若 (1)求函数的解析式; (2)画出函数的图象,并说出函数的单调区间;(3)若,求相应的值.
(1)计算(2)已知,求的值.
已知函数 (1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值. (2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.
(本小题满分13分)(Ⅰ)若,求实数的取值范围;(Ⅱ)二次函数,满足,,求的取值范围.
(理科题)(本小题12分)某房产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元。(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后开发商为了投资其他项目,有两种处理方案①年平均利润最大时以46万元出售该楼;②纯利润总和最大时,以10万元出售楼,问选择哪种方案盈利更多?