题目内容
在△ABC中,已知AC=2,BC=3,cosA=-| 4 |
| 5 |
(Ⅰ)求sinB的值;
(Ⅱ)求sin(2B+
| π |
| 6 |
分析:(1)利用cosA,求得sinA,进而根据正弦定理求得sinB.
(2)根据cosA小于0判断A为钝角,从而角B为锐角,进而根据sinB求得cosB和cos2B,进而利用倍角公式求得sin2B,最后根据两角和公式求得答案.
(2)根据cosA小于0判断A为钝角,从而角B为锐角,进而根据sinB求得cosB和cos2B,进而利用倍角公式求得sin2B,最后根据两角和公式求得答案.
解答:(Ⅰ)解:在△ABC中,sinA=
=
=
,由正弦定理,
=
.
所以sinB=
sinA=
×
=
.
(Ⅱ)解:∵cosA=-
,所以角A为钝角,从而角B为锐角,
∴cosB=
=
=
,cos2B=2cos2B-1=2×
-1=
,sin2B=2sinBcosB=2×
×
=
.sin(2B+
)=sin2Bcos
+cos2Bsin
=
×
+
×
=
.
| 1-cos2A |
1-(-
|
| 3 |
| 5 |
| BC |
| sinA |
| AC |
| sinB |
所以sinB=
| AC |
| BC |
| 2 |
| 3 |
| 3 |
| 5 |
| 2 |
| 5 |
(Ⅱ)解:∵cosA=-
| 4 |
| 5 |
∴cosB=
| 1-sin2B |
1-(
|
| ||
| 5 |
| ||
| 5 |
| 17 |
| 25 |
| 2 |
| 5 |
| ||
| 5 |
4
| ||
| 15 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
4
| ||
| 25 |
| ||
| 2 |
| 17 |
| 25 |
| 1 |
| 2 |
12
| ||
| 50 |
点评:本小题考查同角三角函数的基本关系式、两角和公式、倍角公式、正弦定理等的知识,考查基本运算能力
练习册系列答案
相关题目