题目内容
4.已知x5(x+3)3=a8(x+1)8+a7(x+1)7+…+a1(x+1)+a0,则7a7+5a5+3a3+a1=( )| A. | -16 | B. | -8 | C. | 8 | D. | 16 |
分析 根据x5(x+3)3 =[(x+1)-1]5•[(x+1)+2]3,按照二项式定理展开,求得a7、a5、a3、a1的值,可得7a7+5a5+3a3+
a1的值.
解答 解:∵x5(x+3)3=a8(x+1)8+a7(x+1)7+…+a1(x+1)+a0 =[(x+1)-1]5•[(x+1)+2]3
=[${C}_{5}^{0}$•(x+1)5-${C}_{5}^{1}$•(x-1)4+${C}_{5}^{2}$•(x-1)3-${C}_{5}^{3}$•(x-1)2+${C}_{5}^{4}$•(x-1)-${C}_{5}^{5}$]
•[${C}_{3}^{0}$•(x+1)3+2${C}_{3}^{1}$•(x+1)2+4${C}_{3}^{2}$•(x+1)+8${C}_{3}^{3}$],
∴a7 =${C}_{5}^{0}$•2${C}_{3}^{1}$-${C}_{5}^{1}$•${C}_{3}^{0}$=6-5=1,a5=${C}_{5}^{0}$•8${C}_{3}^{3}$-${C}_{5}^{1}$•4${C}_{3}^{2}$+${C}_{5}^{2}$•2${C}_{3}^{1}$-${C}_{5}^{3}$•${C}_{3}^{0}$=8-60+60-10=-2,
a3 =${C}_{5}^{2}$•8${C}_{3}^{3}$-${C}_{5}^{3}$•4${C}_{3}^{2}$+${C}_{5}^{4}$•2${C}_{3}^{1}$-${C}_{5}^{5}$•${C}_{3}^{0}$=80-120+30-1=-11,a1=${C}_{5}^{4}$•8${C}_{3}^{3}$-${C}_{5}^{5}$•4${C}_{3}^{2}$=40-12=28,
∴7a7+5a5+3a3+a1=7-10-33+28=-8,
故选:B.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.
| A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (-∞,+∞) |
| A. | 2013 | B. | 2014 | C. | 2015 | D. | 2016 |