题目内容

已知等边三角形的一个顶点位于抛物线y2=x的焦点,另外两个顶点在抛物线上,则这个等边三角形的边长为______.
y2=x的焦点F(
1
4
,0)
等边三角形的一个顶点位于抛物线y2=x的焦点,另外两个顶点在抛物线上,
则等边三角形关于x轴对称,两个边的斜率k=±tan30°=±
3
3
,其方程为:y=±
3
3
(x-
1
4
),
与抛物线y2=x联立,可得
1
3
(x-
1
4
)
2
=x

x=
7±4
3
4

x=
7+4
3
4
时,y=±
2+
3
2
,∴等边三角形的边长为2+
3

x=
7-4
3
4
时,y=±
2-
3
2
,∴等边三角形的边长为2-
3

故答案为:2+
3
2-
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网