题目内容

已知等边三角形的一个顶点位于抛物线y2=x的焦点,另外两个顶点在抛物线上,则这个等边三角形的边长为________.

2-或2+
分析:根据题意和抛物线以及正三角形的对称性,可推断出两个边的斜率,进而表示出这两条直线,与抛物线联立,求交点的坐标,从而得解.
解答:y2=x的焦点F(,0)
等边三角形的一个顶点位于抛物线y2=x的焦点,另外两个顶点在抛物线上,
则等边三角形关于x轴对称,两个边的斜率k=±tan30°=±,其方程为:y=±(x-),
与抛物线y2=x联立,可得

时,,∴等边三角形的边长为
时,,∴等边三角形的边长为
故答案为:
点评:本题以抛物线为载体,考查抛物线与正三角形的对称性,考查学生的计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网