题目内容
已知函数y=log2
•log4
(2≤x≤4),求该函数的值域.
| x |
| 4 |
| x |
| 2 |
由y=log2
•log4
=(log2x-log24)(log4x-log22)
=
(log2x-log24)(log2x-log22)=
lo
x-
log2x+1,
设t=log2x,则y=
t2-
t+1,又∵2≤x≤4,∴1≤t≤2,
所以,当t=
时,ymin=-
;当t=1或2时,ymax=0,
所以,函数的值域是[-
,0].
| x |
| 4 |
| x |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| g | 22 |
| 3 |
| 2 |
设t=log2x,则y=
| 1 |
| 2 |
| 3 |
| 2 |
所以,当t=
| 3 |
| 2 |
| 1 |
| 8 |
所以,函数的值域是[-
| 1 |
| 8 |
练习册系列答案
相关题目