题目内容

在△ABC中,若S△ABC=
1
4
3
(b2+c2-a2)
,则角A=
30°
30°
分析:由条件利用余弦定理可得
bc•cosA
2
3
=
1
2
bc•sinA,可得tanA=
3
3
,由此求得A 的值.
解答:解:在△ABC中,由余弦定理可得 b2+c2-a2=2bc•cosA,故由 S△ABC=
1
4
3
(b2+c2-a2)
=
1
2
bc•sinA,
可得
bc•cosA
2
3
=
1
2
bc•sinA∴tanA=
3
3
,∴A=30°,
故答案为 30°.
点评:本题主要考查余弦定理和三角形的面积公式,根据三角函数的值求角,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网