题目内容
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2a n+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:对一切正整数n,有
+
+…+
<
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:对一切正整数n,有
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| 1 |
| 2 |
分析:(Ⅰ)设等差数列{an}的公差为d,可得关于d和a1的方程组,解之代入通项公式可得;(Ⅱ)可得
=
(
-
),裂项相消可得
原式=
(1-
),由放缩法可得答案.
| 1 |
| anan+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
原式=
| 1 |
| 2 |
| 1 |
| 2n+1 |
解答:解:(Ⅰ)设等差数列{an}的公差为d,
则
,解得
故数列{an}的通项公式为:an=2n-1,n∈N*.…(6分)
(Ⅱ)∵
=
=
(
-
),
∴
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)<
.…(12分)
则
|
|
故数列{an}的通项公式为:an=2n-1,n∈N*.…(6分)
(Ⅱ)∵
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
点评:本题考查等差数列的通项公式和求和公式,涉及裂项相消法求数列的和,属中档题.
练习册系列答案
相关题目