题目内容

3.化简下列各式:
(1)$\frac{{a}^{\frac{2}{3}}\sqrt{b}}{{a}^{-\frac{1}{2}}\root{3}{b}}$•($\frac{{a}^{-1}\sqrt{{b}^{-1}}}{b\sqrt{a}}$)${\;}^{\frac{3}{2}}$;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)$•\root{3}{a}$.

分析 (1)化简$\frac{{a}^{\frac{2}{3}}\sqrt{b}}{{a}^{-\frac{1}{2}}\root{3}{b}}$•($\frac{{a}^{-1}\sqrt{{b}^{-1}}}{b\sqrt{a}}$)${\;}^{\frac{3}{2}}$=$\frac{{a}^{\frac{2}{3}}{b}^{\frac{1}{2}}}{{a}^{-\frac{1}{2}}{b}^{\frac{1}{3}}}$•($\frac{{a}^{-1}{b}^{-\frac{1}{2}}}{b{a}^{\frac{1}{2}}}$)${\;}^{\frac{3}{2}}$,从而解得;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)$•\root{3}{a}$=$\frac{{a}^{\frac{1}{3}}(a-8b)}{4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$×$\frac{{a}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}-2{b}^{\frac{1}{3}}}$×${a}^{\frac{1}{3}}$,利用立方差公式解得.

解答 解:(1)$\frac{{a}^{\frac{2}{3}}\sqrt{b}}{{a}^{-\frac{1}{2}}\root{3}{b}}$•($\frac{{a}^{-1}\sqrt{{b}^{-1}}}{b\sqrt{a}}$)${\;}^{\frac{3}{2}}$
=$\frac{{a}^{\frac{2}{3}}{b}^{\frac{1}{2}}}{{a}^{-\frac{1}{2}}{b}^{\frac{1}{3}}}$•($\frac{{a}^{-1}{b}^{-\frac{1}{2}}}{b{a}^{\frac{1}{2}}}$)${\;}^{\frac{3}{2}}$
=${a}^{\frac{2}{3}+\frac{1}{2}-\frac{3}{2}-\frac{1}{2}}$•${b}^{\frac{1}{2}-\frac{1}{3}-\frac{3}{4}-\frac{3}{2}}$
=${a}^{-\frac{5}{6}}$${b}^{-\frac{25}{12}}$;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)$•\root{3}{a}$
=$\frac{{a}^{\frac{1}{3}}(a-8b)}{4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$×$\frac{{a}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}-2{b}^{\frac{1}{3}}}$×${a}^{\frac{1}{3}}$
=a.

点评 本题考查了根式的化简与立方差公式的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网