搜索
题目内容
已知{a
n
}是等差数列,a
6
+a
7
=20,a
7
+a
8
=28,则该数列前13项和S
13
等于( ).
A.156
B.132
C.110
D.100
试题答案
相关练习册答案
由a
6
+a
7
=20,a
7
+a
8
=28知4a
7
=48,∴a
7
=12,S
13
=13a
7
=156
故选A.
练习册系列答案
优加口算题卡系列答案
节节高名师课时计划系列答案
举一反三奥数1000题全解系列答案
全品高分小练习系列答案
达标加提高测试卷系列答案
课课通同步随堂检测系列答案
单元智测卷系列答案
课课练小学英语AB卷系列答案
点击金牌学业观察系列答案
新思维同步练习册系列答案
相关题目
已知
i
=(1,0),
j
n
=(co
s
2
nπ
2
,sin
nπ
2
),
P
n
=(
a
n
,sin
nπ
2
)(n∈
N
+
),数列{
a
n
}
满足:
a
1
=1,
a
2
=1,
a
n+2
=(i+
j
n
)•
P
n
.
(I)求证:数列{a
2k-1
}是等差数;数列{a
2k
}是等比数列;(其中k∈N
*
);
(II)记a
n
=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n
2
)-λf(2n)]≤0,求λ的取值范围.
设S
n
是等差数{a
n
}的前n项和,已知S
6
=36,S
n
=324,若S
n-6
=144(n>6),则n等于
A.15 B.1
6 C.17 D.18
已知
i
=(1,0),
j
n
=(co
s
2
nπ
2
,sin
nπ
2
),
P
n
=(
a
n
,sin
nπ
2
)(n∈
N
+
),数列{
a
n
}
满足:
a
1
=1,
a
2
=1,
a
n+2
=(i+
j
n
)•
P
n
.
(I)求证:数列{a
2k-1
}是等差数;数列{a
2k
}是等比数列;(其中k∈N
*
);
(II)记a
n
=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n
2
)-λf(2n)]≤0,求λ的取值范围.
已知
满足:
.
(I)求证:数列{a
2k-1
}是等差数;数列{a
2k
}是等比数列;(其中k∈N
*
);
(II)记a
n
=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n
2
)-λf(2n)]≤0,求λ的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案