题目内容
已知(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.
【答案】分析:(I)由
=
,知a2k+1-a2k-1=1.由此能够证明数列{a2k}是首项为2、公比为2的等比数列.
(II)由a2k-1=k,a2k=2k,知数列{an}的通项公式为an=
,由此能够求出
.
解答:解:(I)
=
=
,…(2分)
当n=2k-1(k∈N*)时,
π
=a2k-1+1,即a2k+1-a2k-1=1.
所以数列{a2k-1}是首项为1、公差为1的等差数列,…(4分)
.
所以数列{a2k}是首项为2、公比为2的等比数列,…(6分)
(II)由(I)可知:a2k-1=k,a2k=2k.
故数列{an}的通项公式为an=
…(7分)
当n为奇数时,(cosnπ)[f(n2)-λf(2n)]≥0?λ≥
令g(n)=
<0⇒g(n+1)<g(n)
所以g(n)为单调递减函数,∴g(n)max=g(3)=
…(10分)
当n为偶数时,(cosnπ)[f(n2)-λf(2n)]≥0?λ≤
,显然h(n)为单调递增函数,
h(n)min=h(2)=1⇒λ≤1
综上,
…(12分)
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
(II)由a2k-1=k,a2k=2k,知数列{an}的通项公式为an=
解答:解:(I)
=
当n=2k-1(k∈N*)时,
=a2k-1+1,即a2k+1-a2k-1=1.
所以数列{a2k-1}是首项为1、公差为1的等差数列,…(4分)
所以数列{a2k}是首项为2、公比为2的等比数列,…(6分)
(II)由(I)可知:a2k-1=k,a2k=2k.
故数列{an}的通项公式为an=
当n为奇数时,(cosnπ)[f(n2)-λf(2n)]≥0?λ≥
令g(n)=
所以g(n)为单调递减函数,∴g(n)max=g(3)=
当n为偶数时,(cosnπ)[f(n2)-λf(2n)]≥0?λ≤
h(n)min=h(2)=1⇒λ≤1
综上,
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目