题目内容
已知函数f(x)=xsin126°sin(x-36°)+xcos54°cos(x-36°),则f(x)是( )
| A.单调递增函数 | B.单调递减函数 |
| C.奇函数 | D.偶函数 |
∵f(x)=xsin126°sin(x-36°)+xcos54°cos(x-36°)=x[sin54°sin(x-36°)+cos54°cos(x-36°)]
=xcos(x-36°-54°)=xcos(x-90°)=xsinx
∴f(-x)=-xsin(-x)=xsinx=f(x)
∴f(x)是偶函数.
故选D.
=xcos(x-36°-54°)=xcos(x-90°)=xsinx
∴f(-x)=-xsin(-x)=xsinx=f(x)
∴f(x)是偶函数.
故选D.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|