题目内容
求函数y=sin2(2x-
分析一:先设中间变量然后由复合函数的求导法则求导.
解法一:设y=μ2,μ=sinv,v=2x-![]()
则yx′=yμ′·μv′·vx′=2μ·cosv·2
=4·sinv·cosv
=2·sin2v
=2sin(4x-
).
分析二:根据积的求导法则与复合函数的求导法则求导.
解法二:∵y=sin2(2x-
)=sin(2x-
)·sin(2x-
),
∴y′=[sin(2x-
)]′·sin(2x-
)+sin(2x-
)·[sin(2x-
)]′
=4cos(2x-
)·sin(2x-
)
=2sin(4x-
).
分析三:由三角降次公式先化简,再求导.
解法三:∵y=sin2(2x-
)
=
[1-cos(4x-
)]
=
-
cos(4x-
),
∴y′=-
[-sin(4x-
)]·4
=2sin(4x-
).
练习册系列答案
相关题目