题目内容
设函数f(x)=
x3+
x2+tanθ,其中θ∈[0,
],则导数f′(1)的取值范围是
______
| sinθ |
| 3 |
| ||
| 2 |
| 5π |
| 12 |
∵f(x)=
x3+
x2+tanθ,
∴f'(x)=sinθx2+
cosθx
∴f′(1)=sinθ+
cosθ=2sin(θ+
)
∵θ∈[0,
],∴θ+
∈[
,
]
∴sin(θ+
)∈[
,1]
∴f′(1)∈[
,2]
故答案为:[
,2].
| sinθ |
| 3 |
| ||
| 2 |
∴f'(x)=sinθx2+
| 3 |
∴f′(1)=sinθ+
| 3 |
| π |
| 3 |
∵θ∈[0,
| 5π |
| 12 |
| π |
| 3 |
| π |
| 3 |
| 3π |
| 4 |
∴sin(θ+
| π |
| 3 |
| ||
| 2 |
∴f′(1)∈[
| 2 |
故答案为:[
| 2 |
练习册系列答案
相关题目
设函数f(x)=|sin(x+
)|(x∈R),则f(x)( )
| π |
| 3 |
A、在区间[
| ||||
B、在区间[-π,-
| ||||
C、在区间[
| ||||
D、在区间[
|