题目内容
已知函数f(x)=x2+aln x.
(I)当a=-2时,求函数f(x)的极值;
(II)若g(x)=f(x)+
在[1,+∞)上是单调增函数,求实数a的取值范围.
解:(I)函数f(x)的定义域为(0,+∞)
当a=-2时,
当x变化时,f′(x),f(x)的值变化情况如下表

由上表可知,函数f(x)单调递减区间是(0,1),单调递增区间是(1,+∞)
极小值是f(1)=1,没有极大值
(2)
因为g(x)在[1,+∞)上是单调增函数
所以g′(x)≥0在[1,+∞)上恒成立
即不等式
在[1,+∞)上恒成立即
在[1,+∞)上恒成立
令
则
当x∈[1,+∞)时,
∴
在[1,+∞)上为减函数
∅(x)的最大值为∅(1)=0
∴a≥0
故a的取值范围为[0,+∞)
分析:(I)求出f(x)的导函数,列出x,f′(x),f(x)的变化情况表,求出单调区间及函数的极值.
(II)令g(x)的导数大于等于0恒成立,分离出参数a,构造新函数,通过导数求出新函数的最小值,令a大于等于最小值即得到a的范围.
点评:求使函数单调的参数的范围时,若函数单增则令其导数大于等于0恒成立;若单减,则令其导数小于等于0恒成立.
当a=-2时,
当x变化时,f′(x),f(x)的值变化情况如下表
由上表可知,函数f(x)单调递减区间是(0,1),单调递增区间是(1,+∞)
极小值是f(1)=1,没有极大值
(2)
因为g(x)在[1,+∞)上是单调增函数
所以g′(x)≥0在[1,+∞)上恒成立
即不等式
令
∴
∅(x)的最大值为∅(1)=0
∴a≥0
故a的取值范围为[0,+∞)
分析:(I)求出f(x)的导函数,列出x,f′(x),f(x)的变化情况表,求出单调区间及函数的极值.
(II)令g(x)的导数大于等于0恒成立,分离出参数a,构造新函数,通过导数求出新函数的最小值,令a大于等于最小值即得到a的范围.
点评:求使函数单调的参数的范围时,若函数单增则令其导数大于等于0恒成立;若单减,则令其导数小于等于0恒成立.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|